TRUSS DEFLECTION

$28^{\text {th }}$ December ' 15

Q: Find the bar forces in $A B, B C, B D, C D, D E, B E, A E \&$ the value of Δ_{C}.

Solution:

$\therefore \mathrm{R}_{\mathrm{EY}}=30 \mathrm{kN}$
$\Sigma F_{Y}=0$
or, $\mathrm{R}_{\mathrm{AY}}+30=0$
$\therefore \mathrm{R}_{\mathrm{AY}}=-30 \mathrm{kN}$

At C, the vertical 30 kN load and the horizontal 40 kN are being balanced out by the components in the member BC .

30kN

At A, the reactions 30 kN and 40 kN are balanced out by the components in the member $A B$.

The axial force in member AE is zero.

At E , the reaction of 30 kN and the axial force in member DE balance each other out.

The vertical and horizontal components of $B E$ are zero. The acial force in $A E$ is also zero.

At D , the axial forces in members CD and DE balance each other out. Since there are no horizontal loads or forces acting, the axial force in BD is zero.

For Δ_{c} :
The virtual loading diagram is-

Bar	Length (m)	Constant A\&E	Bar force due to actual load, NO(kN)	Bar force due to virtual load,N1(kN)	$\mathrm{N}_{0} \mathrm{~N}_{1} \mathrm{~L} / \mathrm{AE}$
AB	2.5	-	+50	+1.25	156.25/AE
BC	2.5	-	+50	+1.25	156.25/AE
CD	1.5	-	-30	-0.75	33.75/AE
DE	1.5	-	-30	-0.75	33.75/AE
AE	4	-	0	0	0
BD	-	-	0	0	0
BE	-	-	0	0	0
$\sum \mathrm{N}_{0} \mathrm{~N}_{1} \mathrm{~L} / \mathrm{AE}=380.0 / \mathrm{AE}$					

$\therefore \Delta_{\mathrm{c}}=380 / \mathrm{AE}$.

So, the deflection will be to the right direction.
Done by: Ms. Sama Ahmed

