BEGINNER'S ENTRY TO ANALYSIS OF STATICALLY DETERMINATE STRUCTURES

Contents

Chapter 1 Introduction		
-		
1.1 What Does the Word Stru	icture Mean?	
1.2 What is Structural Analys	sis?	
1.3 The Common Structural I	Forms 2	
1.4 Composite Structures	6	
1.5 Truss, Frame, Plate, and S	Shell 7	
1.6 Appropriate Number of S	ignificant 8	
Figures		
1.7 Engineering and Science	9	
1.8 Presenting Results of a Ca	alculation 9	
1.9 Doers and Checkers	10	
Chapter 2 Review of Statics and Others		
•		
2.1 Supports and Reaction Fo	orces 11	
2.2 Equations of Equilibrium	·	
2.3 Triangular Relationship-		
Length		
Chapter 3 Shear Force, Bendin	g Moment	
•		
3.1 Shear and Bending Mome	ent 29	
3.2 Important Notes on SFD		
3.3 Change of the SFD and B		
3.4 Selection of Curve	39	
3.5 Shear and Moment Diagra	ams for a Frame 48	
3.6 Moment Diagram Constru		
Method of Superposition	,	
• •		
Chapter 4 Review of Truss, Bea	am	
<u>.</u> .,		
4.1 Truss	91	
4.2 History	92	
4.3 Early Evolution of Trusse		
4.4 Trusses of Economical Pr		
4.5 Classification of coplanar		

4.6	Analysis of Trusses	104
4.7	Beam Moment, Curvature, Slope and	106
Deflecti	on	
Chapte	r 5 Determinacy and Stability	
5.1	dealized Structure	111
	Гуреs of Idealization or Modeling	112
5.3	Determinacy and Stability for Beams and	114
Frames		
5.4	Determinacy and Stability for Trusses	127
Chapte	r 6 Influence Lines	_
6.1	Introduction to Influence Lines	131
	Generation of Influence Lines Using the	133
Müller-	Breslau Principle	
	Generation of Influence Lines Using	142
Statics		
	Placement of Loads on Influence Lines	150
	Calculation of Reactions, Internal Shears	
and Inte		
	Moments Using Influence Lines	155
	Γruss Influence Lines	178
	Placing Moving Loads for Maximum	186
Momen		100
	General Rules for Simple Beams	188
	g Moving Loads	100
	Envelop for Moving Loads	188
	Reactions due to Moving Concentrated	190
Loads	Shoor due to Moving Concentrated Loads	102
	Shear due to Moving Concentrated Loads	192
	Reversal of Stress Example Locomotive Portion of the Train Load	195 197
	Influence Lines for Floor Beams	197
	Influence Lines for Frames	201
0.15	influence Lines for Frames	201
Chanta	n 7 Auches Duidges and Cables	
Спарие	r 7 Arches, Bridges and Cables	
7.1	Arahas	211
	Arches	211
	What is a bridge?	216
	History of Bridges	216
	Bridge Basics	217
	Types of Bridges	220
	Basic Concepts and Theoretical	251
	tions of Cables	252
7.7	Developing Equation for General Cable	253

Theorem	
7.8 Cables with Horizontal Chord Subject to	
Uniformly Distributed	
Loading	259
7.9 Cable System with Single Load at Mid-	263
span	
7.10 Parabolic Cable: Subjected to Linear	264
Uniform distributed Load	
7.11 Uses of cables	276
7.12 The Catenary with its Parabolic	
Approximation:	
An Example of the Parabola versus the	278
Catenary	
References	285