Design of Experiments I Spring 2002

Introductory Material

Statistical Concepts and Methods
Useful for Design of Experiments

Feel a little uneasy with
statistical terms and methods?
This section should help.

g

Apart from her fame as a pioneer in modern
nursing and public health, Florence
Nightingale was a distinguished member of
the American Statistical Association

Hear her actual voice recordings at:
http://www.dnai.com/~borneo/nightingale/
nutting.htm

e ""(Statistics is) the most important science in the whole world,
for upon it depends the practical application of every other
science and of every art: the one science essential to all political
and social administration, all education, for only it gives exact
results of our experience....to understand God's thoughts, we
must study statistics, for these are the measure of his purpose." -

-- Florence Nightingale
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Samples Vs. Populations
e Sample: A subset of size n of observations drawn from a target
population.

e Random Sample: A sample selected in a random manner -- each
member of the population has an equal probability of being selected.

e Population: A conceptual or physical set of all possible
observations that can be collected (a.k.a.,Target Population).

e Population Mean: The theoretical average of a population denoted
by the Greek letter p.

e Population Standard Deviation: The theoretical standard deviation
of a population denoted by the Greek letter c.

¢ Population Variance: The theoretical variance of a population :
denoted by c2.

Frequency Distributions

e Data can be displayed using a variety of ‘visual’ methods.
One important tool is the frequency distribution.

¢ In any population, some random variation is always present -
no two members of a population are identical.

For example, there is some variation in the following:

¢ Height and weight of human beings
¢ Number of blue M&M’s in randomly selected bags

e For discrete or categorical data, frequency (count) is the
number of times each value occurs in the data set.

e For example: The number of blue M&M’s in each bag is a
discrete measurement. The ‘frequency’ of blue M&M’s can
be counted. -




Frequency Distributions

e Ifthe data are continuous measurements, then we must use
grouped frequency. The range of the data is divided into
convenient intervals (bins) and we count the number of data
points falling into each interval.

For example: The frequency of ‘5th grade girls in a particular
school that weigh 65-75 Ibs’ is a ‘grouped frequency’.

e The frequency (total count) for each interval can be converted
into a relative frequency, or ‘percent’. Here, we divide
each interval frequency by the total number of data points to
calculate a ‘percent’.

The relative frequency of 5th grade girls weighing 65-75 Ibs
is a percent of all of the 5th grade girls.

Frequency Distributions

e On the following slide, grouped frequencies, relative
frequencies (percents) and cumulative percents have been
calculated for a data set.

e The following steps were followed :
1. Order the data points from smallest to largest.
2. Count the number of data points (n).

3. Determine bin size - square root n is a good guideline.
Note: bins must be the same size and cannot overlap.

4. Place a tally mark in the appropriate bin for each data point.
5. Count the number of tally marks in each bin.

6. Calculate the grouped frequency, percent and cumulative
percent for each bin. 6




Frequency Distributions

Aluminum Lithium Strength Data

Batch A |Batch B [Batch C Batch D |Batch E Batch F Batch G |Batch H

105 221 183 186 121 181 180 143

a7 154 153 174 120 168 167 141

245 228 174 199 181 158 176 110

163 131 154 115 160 208 158 133

207 180 180 193 194 133 156 123

134 178 76 167 184 135 228 146

218 157 101 171 165 172 158 169

189 151 142 163 145 171 148 158

160 175 148 87 160 237 150 135

196 201 200 176 150 170 118 149

Frequency Distribution of Al-Li Data
Class Interval Tally Mark Frequency Relative
KSI* Frequency™*

70= x<90 " 2 0.0250
90 = x< 110 M 3 0.0375
110 € x < 130 ittt 6 0.0750
130 = x< 150 L 14 01750
1505 x< 170 FEE T H i 11 22 0.2750
170 = x < 190 R 17 0.2125
190 = x < 210 I 10 0.1250
210 x < 230 i 4 0.0500
230 < x <250 i 2 0.0250

*Min value 76, Max value 246, n=80. use range 70-250 with 9 bins of width 20

Histogram of the Aluminum Lithium Data
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Frequency Distributions

A Bar chart is a graphical display of a frequency distribution for
categorical data.

A Pareto Chart is a special type of bar chart (more on these
charts later).

A Histogram is a graphical display of a grouped frequency
distribution for continuous data.

There are three important characteristics of histograms:

e Shape: Is the shape symmetric or ‘skewed’?
e Central tendency: Is there a mounded shape?
e Scatter: How do the data spread about the center?

These characteristics are demonstrated on the following slides:

Frequency Distributions

Common Histogram Shapes:

Left Skewed: Data trails off to
the left.

Symmetric: Data has
approximately the same
distribution on either side of the
center point.

Right Skewed: Data trails off to
the right. Time data is almost
always right skewed.




Frequency Distributions

30

What is the Central Tendency?

Bi-modal or multi-modal: More
than one ‘peak’. This may be an
indication that there is more than

one population in the data.

Uniform: Data is evenly 0 1
distributed with no peak or central :-
tendency.

Uni-modal: Data has one central
tendency.

Frequency Distributions

How much ‘spread’ or _
variabity is in the data? .
How much spread is there o- =

F

about the central tendency?




Frequency Distributions

As we saw previously, Cumulative Frequency Distributions
are another effective method for displaying data.

This type of display is often used when we are interested in
the percent of items falling below a particular value.

Frequency Distribution

Cumulative Frequency Distribution
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Frequency Distributions

Histograms provide many benefits. Histograms:

e Are a graphical representation of a frequency distribution.
e Are good compact summaries of a data set.

e Are easy to interpret variation in the data set.

e Help to identify unusual patterns.

Unfortunately, histograms also have many limitations and

should be used with caution:

¢ Individual data points are lost.
e Histograms are unstable with less than 75 data points
and can be very misleading. 100 or more data points is

highly recommended.

e Improper bin sizes, as we will see on the following
slide, can mask important data features. b




The Empirical Rule

In manufacturing we are often interested in predicting the
proportion of products or units that will fall within a specified
range (or specification limit).

According to the Empirical Rule: If a frequency distribution is
approximately symmetric and mounded in shape, then we will
observe the following:

e Approximately 68% of all values will fall within 18
(standard deviation) of the mean.

e Approximately 95% will fall within £2§ of the mean.

e Nearly 100% will fall within 23§ of the mean.

As we will see, this rule is used a great deal in industrial statistics

to calculate quantities such as spec limits and process limits.
15

The Empirical Rule
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If a random variable is Normally distributed, then the Empirical

Rule works exactly. -




The Empirical Rule

e The sample mean is 162.66 and the sample standard
deviation is 33.77.

e Applying the Empirical Rule to this data:

“* We expect 68% of the data to be in the interval [129,
196].

+»+ The observed frequency is 57 values or 71%.
s We expect 95% of the data within the interval [95, 230].
% The observed frequency is 75 values or 94%.

e The Empirical Rule typically works well if the frequency
distribution is not too skewed (with a long tail) or too flat

(no central mound). =

Measures of Location and Spread

While graphical displays can show us trends or patterns in our
data, we are often interested in two important characteristics:

e Measures of the ‘location’ of the center of the
population or sample, also referred to as the ‘central
tendency’.

Three measures of central tendency are mean, median,
and mode.

e Measures of ‘scatter’ or variability of the population or
sample. These are measures of the spread of the values
around the central tendency.

Three measures of spread are variance, standard

deviation, and range. e




Measures of Location and Spread

For the pull-off force data presented earlier, what can we
conclude about the distribution of values?

I I I
12.5 13.0 13.5

Pull-off Force

What is a typical pull-off force?

How do the measurements vary about the center?
19

Measures of Location and Spread
The Sample Mean or average is the most important
measure of ‘the middle” of the data.

The sample mean, referred to as ‘X-bar’, is the average of
all observations from a sample:

XX et X, DX
n

n

i=1""1

X

The mean is the center of gravity or balancing point of a
data set.

The sample mean is an estimate of the population mean,

which is the average of all observations from a population.
20




Measures of Location and Spread

An example of a sample mean for the pull-off force data.

X =13
L l ®
I I
12.5 A 13.5

Pull-off Force

¢ Notice that the mean is denoted by a fulcrum to emphasize
that it is the balancing point of the distribution of values.
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Measures of Location and Spread

e The Sample Median is the 50th percentile of the sample
data. Half of the data values lie below the median and half
lie above the median.

The median is the middle value.

Notion: We usually denote the median by placing a ~ (tilde)
over the variable, or we use the subscript 0.50.

Example: The sample median is denoted X or X 0.50-

e The sample median and sample mean are approximately the
same if the distribution is symmetric. If the distribution is
highly skewed, then the mean and median are quite different.

e (Can you explain why?
22




Measures of Location and Spread

The two most important measures of the variability or spread
of sample data are Variance and Standard Deviation.

Sample Variance, denoted by S
% §7is an estimate of the population variance 2.

% §? = average squared distance the data points lie from
their sample mean.

Sample Standard Deviation, denoted by :
+* S is an estimate of the population standard deviation c.

¢ S = average distance the data points lie from their sample

mean.
23

Measures of Location and Spread

The sample variance is calculated as the average squared
distance from the sample mean.

In other words, the variance is computed by calculating
distance from each data point to the sample mean:

> (x - X)

n—1

S =

The sample standard deviation, the average distance from the
sample mean, is calculated from the sample variance:

S=+/5?

24




Measures of Location and Spread

e (alculation of variance and standard deviation for the pull-
off force data.

i Pull-off ( X:) Xi-X (xi-X)’

1 12.6 0.4 0.16

2 12.9 -0.1 0.01

3 13.4 0.4 0.16

4 123 -0.7 0.49

5 13.6 0.6 0.36

6 13.5 0.5 0.25

7 12.6 -0.4 0.16

8 13.1 0.1 0.01
104.0 0.0 1.60

, 1.60 2
S? = ER =0.2286( ft —Ibs*), S =+/0.2286 =0.4781( ft — Ibs)

Measures of Location and Spread

e The denominator for the calculation of sample variance, S is
n-1. This is known as the ‘Degrees of Freedom’.

e Degrees of freedom is an important concept in statistics which
will be referred to often.

e The degrees of freedom are the number of ‘freely varying
observations’ in a sample data set. The larger the sample
size, the larger the degrees of freedom. Larger degrees of
freedom allows us to make stronger inferences about the
population characteristic.

(This concept is extremely important, particularly when we are
discussing Designed Experiments).

26




The Normal Distribution

The most important distribution is known as the Normal or
Gaussian Distribution. This distribution, known as the Bell
Shaped Curve, is the basis for most of the statistical
techniques we will cover throughout the course.

For all continuous distributions, calculus is required to
calculate the probabilities - the area under the curve.

To determine probabilities for normally distributed
populations, a ‘normal probability table’ has been created
(as we will see in a few slides).

There are infinitely many possible normal probability curves,
each depending on the mean and the variance. On the next
slide, we see examples of normal curves with different
means and variances. 27

The Normal Distribution

There are infinitely many possible normal distributions defined
by values of the population parameters p and 2.

1(X)

For any normal random variable X with mean p and variance
o2, we denote the distribution as X~N(u; 6?). 2




The Normal Distribution

Example: The distribution for pull-off force for bonded wires
(in the semi-conductor industry) is normally distributed, and
has a mean of 10 and a variance of 4. We denote the
distribution as X~N(10;4):

0.4+
0.3+
<
0.2

0.1

0 :
.00 10.00 20.00

X

The shaded area shows P(X>13) for a normal random variable
with p=10 and = 2. o

The Normal Distribution

A normal random variable with p = 0 and ? = 1 is called a
standard normal random variable and is denoted by ‘Z’.

We denote the distribution for the standard normal variable by
7Z~N(0;1). This is a reference distribution that all normal
distributions can be compared to.

The normal probability table, shown on the next slide, is based
on the cumulative standard normal distribution - the
cumulative area under the standard normal curve from right
to left.

Note that the table starts at Z=0.00 and goes to Z=3.09
(negative values of Z are not listed). This is because the
normal distribution is symmetric around the mean - both
sides of the distribution have the same probabilities. 30




The Normal Distribution

This table can also be found in the Appendix (Normal Curve
Probabilities).

Z 0.00 0.01 0.02

& ~033319 0.0 | 0.50000 | 0.50399 | 0.50398

1.5 |1 0.93320 | 0.93448 | 0.93574

N

0 3 T T T T T T T T
5.0 40 30 -20 -1.0 0 10 20 30 40 50
z

The figure above depicts a typical probability calculation for Z
using the normal probability table on the previous slide.

From the table, we find that the probability that Z < 1.5,
written P(Z < 1.5), is .93. 31

The Normal Distribution

Example: Probability calculations for Z:

The table gives the cumulative probability (area under the
curve) from the left.

To find a probability (area) to the right, subtract from 1,
since the total area under the curve = 1.

P(Z>15)=1-P(Z<1.5)=1-0.9332=0.0668

03] '/ \\ 03
8 / \'\ 8 2 A\
/0 £
.1 / 0.1 )
01 / / \
0 g 0 L=

S0 40 30 20 10 0 10 20 30 40 50 50 40 30 20 -0 0 Lo 20 30 40 50
z z
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The Normal Distribution

Suppose we wish to find percentiles of Z such that P(z<Z<z)=0.95.
Because the normal distribution is symmetric, each tail outside of
this interval contains an area (probability) of 0.025.

From the Standard Normal table, P(Z < 1.96) =0.975. Therefore,
P(Z <-1.96) = 0.025 and our desired interval is P(-1.96 < Z <
1.96) = 0.95.

0.4+

0.3

1(Z)

0.2

0.1

]

N

N

50 40 30 20 10 0 10 20 30 40 50 %
z

The Normal Distribution

In the figure below we compare the normal random variable X to
its standard normal counterpart Z:

0.5
0.4 .
X:u=10,0=2
_0.34 / \“.,
G Z:u=0,0=1
0.1] E / N
// S
T T \\
20 460 6;0 S;U 12:0 IZ!AU 1430 169.0 18.0 X —_ ﬂ
o + v } + + ¥ Z = o
o4 SN 13-10
- 7-2""_15
g 2
0.2] /
’/
0.1] / \
- "\;\
-40 30 -2‘.0 1.0 0 I,‘ﬂ 20 30 4.0
z 34




The Normal Distribution

We may be interested in whether our process is capable of
producing parts that are within the specs that have been

established by either an internal or an external customer.

Example: For a machining operation, the most critical

measurement of the operation is the outer diameter of the

parts produced.

A specification has been established by the external customer.
The target is .25 mm +/- .0015 mm (the lower spec is .2485

mm and the upper spec is .2515 mm).

The outer diameter, based on process data, has the
distribution X~N(0.2508;0.00052).

What percentage of parts will be within specifications?

35

The Normal Distribution

We start by turning X into Z values.

Jeeawt
(o2
o 2485-0508 |
0005
I 2ob, 2505t
0005

Then, we use the standard normal table to calculate the
probabilities of Z.

P(Z<-4.6) = 0.00, and P(Z<1.4) = 0.92
Thus, P(-4.6 < Z< 1.4)=0.92 - 0.00 = 0.92.

36




The Normal Distribution

Therefore, P(.2485 <X <.2515) =0.92.

Since the probabilities of Z apply to our random variable
X, approximately 92% will be within specification.

0.2485

0.300000- P(X < 0.2515)
=0.92

0.400000 -

1(X)

0.200000

0.100000

0.000000

0.2515

N

2480 2490 2500
X

2510

2520

2530
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Normal Quantile Plot

How do we know if our data are normally distributed? In

practice we are often not certain if a sample data set came
from a normally distributed random variable.

For the normal distribution: X =Z o+ u

We can calculate percentile values p from the sample data set.

We can then plot these percentiles of X versus the

corresponding percentiles of Z.

If the plot is approximately a straight line, then we assume that
the data come from a normal distribution.

This plot is referred to as a Normal Quantile Plot.

38




Normal Quantile Plot

We will continue with the Aluminum Lithium Data. Do the KSI
data seem to come from a normal distribution?

2

Mormal Gusntile Plot

1

B oox ER B
T T TT 7

-0

100 200
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The Rule of Averages

A very powerful rule used throughout industrial statistics is The
Rule of Averages (or the Central Limit Theorem):

Suppose we have a random variable X with a population
mean u and a population standard deviation o, then sample
averages of size n drawn from the population of X are
normally distributed with population mean = u and

population standard deviation = 7 .
Jn

The term “standard error of the mean”, y L is the standard

deviation of the sample mean, where 7 is the sample size.

40




The Rule of Averages

Why is this rule important? It is one of the fundamental
reasons we use sample data:

e The standard deviation of the sample mean is always
less than the standard deviation of the raw data (by a
factor of the square root of the sample size).

e We get more precise estimates of population behavior
by taking samples. Larger samples give more precise
estimates than smaller samples.

e Averaging is a very effective noise filter.

e Sample means are normally distributed.

As we will see in the following examples, the Rule of Averages

applies to both normal and non-normal distributions. o

Overlay Plot of Raw Values of X and Mean Values of X, n=10

| Overlay of Sample Data and Sample Averages for 100 n=10 size samples |

. . . . Vo
0 10 il 30 40 50 &l 70 20 0 100
Sample ID

42




e The Rule of Averages at Work: Raw values X~N(10;4)
compared to their sample means for sample size n=10

 Distributions Raw Data | | Distributions Sample Means |

304 5 6 7T 8 9 101112 13 14 15 304 5 a6 7T 8 9 10 11 12 13 14 15
Mean 9 PE2TEIE Mean 9 8T9EEE1
Std Dev 1 9867533 Std Dev 06190726
Std Err Mean 00628267 Std Err Mean 001957638
upper 95% Mean  10.026075 upper 5% hMean 99183051
lower 05% Mlean 98304062 lower 059 Mean 98414711
N 1000 N 1000
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Overlay Plot of Raw Values of X and Mean Values of X for n=10

| Overlay of Raw Data and Sample Averages for 100 size n=10 Samples |
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The Rule of Averages at Work: Raw exponential values X
compared to their sample means for sample size n=10

[ Distributions Raw Data |  Distributions Sample Means |

16 17 10 11 12 13 14 15 16 ll?
Iean 11.034713 Mean 11.035997
3td Dev 10031181 Std Dev 03213689
3td Err Mean 00317214 Std Err Mean 00101626
upper 95% Dean  11.096968 upper 95% Mean 1105594
lower 95% Mean 10972469 lower 95% Mean  11.016054
N 1000 N 1000
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Confidence Intervals

¢ Point estimates of parameters, like the sample mean, do not
tell us anything about the precision of the estimate. As an
example, a single estimate of the population mean p may fall
very far from the true underlying value.

e Recall that point estimates are sample statistics that have a
probability distribution. We make use of these distributions in
order to determine how close our individual sample estimates,
of a population parameter, may be to the true underlying
parameter value.

e Two popular statistical methods to quantify the precision in a
point estimate are called: (1) Confidence Intervals, and (2)
Hypothesis Tests.

46




Case Study: Color Rendition Index (CRI) is an important
characteristic of fluorescent lamps (100 is sunlight). The dot plot
depicts 20 CRI values for a lot of manufactured Compact

Fluorescent Lamps (CFLs). Is the process on target?

Frooess Sediicions
63+10
@ {
=] @ @
o © @ (S
=] 9 e @ © @ 9 (=R ¥

XY=35075 §-454 X, =505 0, =5, Q,-62

[#]

52 83 5 55 55 57 s3 59 60 g g2 63 B4 A5 €6 &7 6B 69 70 71 72 73
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e If the lamp manufacturing process is on target (u=63), then is it
likely to observe a sample average as low as 59.75? Is the
process on target? To answer this question we must look at the
probability distribution for the sample average and determine if
the observed sample value is probable; i.e., have we observed an

error in our process?

e Use the sample standard deviation S to obtain the
standard error for the sample mean (S.E.=1.02)

S =

S
" n

e Use the Empirical Rule to determine if 59.75 is a probable

sample average given the process is on target.

® 95% of sample averages should be in the interval
63 +2(1.02) =[60.96, 65.04], 99% in 63 + 3(1.02) =

[59.94, 66.06].

¢ Neither interval contains the sample average 59.75.

48




Histogram for 1,000 simulated sample mean CRI values

CRI~N(59.75;1.022). Not one sample mean exceeds 63.

CRI

5.0 59.0 a0.0 a1.0 2.0 63.0
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Finding a Confidence Interval for '"p'" With Small n

e We wish to calculate an interval of possible values for the
true unknown population mean L.

e We must be able to quantify our level of confidence that the
interval contains the true unknown mean.

o Statistical confidence intervals provide a way to compute
such an interval of possible values for p.

e Student's t distribution is the basis for statistical confidence
intervals.

50




Student’s t Distribution

o If then|Z = X-u follows the "standard normal
(o2

distribution”, N(0;1).

e ¢ is usually unknown and is estimated by the sample standard
deviation S.

e ¢ must be a known value in order for Z to follow a
standard normal distribution.

e When S is used to estimate o, we have Student's t distribution

X - X -
t., = i o or |l = y ~ with n=0.0 and 6>1.0.
Jn

S
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e The added variability (¢ > 1.0) of Student's t comes from
estimating ¢ with S.

e The exact shape of Student's t distribution depends upon the (n-1)
degrees of freedom used to estimate S.

e Student's t has thicker tails compared to the standard normal for
small degrees of freedom. As the sample size n increases, Student's
t approaches the shape of the standard normal.

e A table of percentile values for each distribution is required, since
the distribution shape changes with the degrees of freedom n-1.

e The appendix contains a table of percentiles for Student's t
distribution -- the rows are indexed by increasing degrees of
freedom; i.e., each row represents a different distribution curve.
The columns are indexed by percentile values for each distribution.
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Standard Normal Distribution Vs. Student’s t Distributions

<—' Standard Normal ‘
\ \

Student's t with 10 df ‘

04 ‘

‘ Student's t with 3 df ‘

/ / ‘ JP € a1 Jo o[nuooied qls'm‘

X\ 1811 Z JO 9[nuadiad q]g'Z‘
// 18101 Z Jo d[iuodrad y¢'L6 \

\\ ‘ P € P} Jo amuaoIad q&'z‘

T T T T T T T
-4.0000 -3.0000 -2.0000 -1.0000 0000 1.0000 2.0000 3.0000 4.0000
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Calculating a Confidence Interval for p Using Student’s t
Distribution

1. Specify a desired level of confidence for the interval -- usually
denoted by the Greek letter o (alpha) and typical values are
0.10, 0.05, or 0.01.

2. For the selected a, compute the Percent Confidence for interval.
The Percent Confidence = (1- a)*100.

3. Compute the required percentile from Student's t distribution.
* The percentile = (1- a/2)
Example: for a 95% C.1., a=0.05, the percentile is 0.975.

(For the degrees of freedom n-1 and the specified percentile, use the
Student's t table to find the appropriate "Student's t value").

Example: 0=0.05, n=11, the desired percentile,

from Student's t Table is t, 4,5 ,,=2.228.
54




5);

Using and sample standard deviation S, calculate

the desired confidence interval for p using the formula:

— S = S
X _tl—a/Z,n—l ﬁ’X + tl—a/Z,n—l ﬁ

We are (1-a)% confident the interval contains the unknown
value for the population mean p.

Confidence intervals are easy to calculate but take a little

practice at first.
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Partial Student’s t Table

CUMULATIVE PROBABILITY

DF 0.75 | 0.90 0.95 0.975 0.99 0.995
1 1.000| 3.078 | 6©6.314| 12.706| 31.821 | 63.657
2 0.816|1.886| 2.920| 4.303[ 6965| 9.925
3 765 (11.638| 2.353| 3.182| 4541 | 5.841
4 7411533 2132 2776 3747 4.604
S5 0.72711.476| 2.015| 2571 3.365| 4.032
6 7181 1.440| 1943| 2.447| 3.143| 3.707
7 711[1.415| 1.895| 2.365| 2.998| 3.499
8 706 [1.397| 1.860| 2.306| 2.896| 3.355
9 703 [1.383| 1.833| 2.262| 2.821| 3.250
10 0700|1372 | 1.812| 2.228| 2.764| 3.169
11 697 1363 1.796| 2.201| 2718| 3.106
12 695[1.356| 1.782| 2.179| 2.681| 3.055
13 6941350 | 1.771| 2.160| 2.650| 3.012
14 6921345 1761 2145 | 2624 2.977
15 06911341 | 1.753| 2.131| 2.602| 2.947
16 690 (1.337| 1.746| 2.120| 2.583| 2.921
17 6891333 1.740| 2.110( 2.567| 2.898
18 688 |1.330| 1.734| 2.101| 2.552| 2.878
19 688 (1.328| 1.729| 2.093| 2.539| 2.861
20 0.687]11.325| 1.725| 2.086[ 2.528| 2.845
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Example: Calculate a 95% Confidence Interval for the CRI data.
For n=20 sample measurements we have:

X =59.75, S =4.54, t,,,,, =2.093
S

Recall our formula fora C.I.: | X +¢

n—11-a/2
VN

Therefore our 95% C.1. is

59.75+ 2.093ﬁ =59.75+2.093(1.02) =

V20

57.63< 1 <61.88

Notice that the interval does not contain 63 which indicates that
the target value it is not a plausible value for the process mean.
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What Does a Confidence Interval Tell Us?

e Although fairly easy to calculate, confidence intervals have a
subtle interpretation and are often misinterpreted -- even by
statisticians.

e A (1-a)% confidence interval does not imply a probability that
any one interval actually includes the true mean .

¢ The confidence interval level actually states that, "if I collected
100 sample sets and constructed a C.1. for each set, then (1-a)% of
those C.1L.'s will bracket the true unknown mean p -- no claims are
made for anyone of the individual computed C.L.'s.

* As an example, a 95% C.I. implies that if we collected 100
sample sets and computed 100 C.1.'s, on average 95 out of
the 100 intervals will contain the true unknown mean L.
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100 Simulated 95% Confidence Intervals for, n=5,
Using Student's t, 4 df
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Calculating Confidence Intervals in JMP

e Many find the arithmetic of confidence intervals rather obscure,
however modern software like JMP provide confidence interval
estimates for the data analyst.

e [t is important, however, that the data analyst properly understand
the interpretation of the confidence intervals that are computed by
the software.

¢ JMP provides confidence interval estimates for a population mean
u in a number of platforms where such intervals make sense for the
data analysis.

e We will only cover the more common places where a data analyst
might wish to compute a confidence interval for a single population
mean for some number of different population means.
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e The most common platform to use, when confidence intervals
are desired for a population mean, is Distribution of Y.

¢ In Distribution of Y one can specify the confidence level to use
in estimating a confidence interval, but JMP provides a 95%
confidence interval by default.

* Distributions

¥ wksi

Display Options »

Capability Analysis
Fit Distribution »
Save 4

CDF Plot lower95% Mean  153.1466
Test Mean... I N 20,0000
Test Std Dev... |

Confidence Interval

90 The Confidence Interval
- menu option lets you
gtier.,, select the confidence level

: ) |* Moments
Higtogram Options ~ » { 0/ :
Nomal Quantile Plot “|| Mean 1626625 1| A 95% interval
v (Outlier Box Plot Std Dev 3TE2Y ) g provided by
Buantile Box Plot Std Ext Mean 3.7760
Stem and Leaf upper9% Mean  170.1734 || default

] o1

Example: Use the dataset Al Li.JMP to compute a 90%, 99%, and
95% confidence interval for the unknown population mean KSI
value. Use the Distribution of Y platform.

Distributions
: | Mean 1626625
e L - || StdDev 33.7732
— | Std Exr Mean 37760
| upper25% Mean 1701784 0
| lower 95% Mean 155.1466 95 A) CI
| N 0.0000
T ¥ T T T T
100 150 200 250|

Confidence Intervals

Parameter Estimate LowerCI
Mean 1626625 1563779
Std Dev 3377324 2990657

Confidence Intervals
Parameter  Estimate LowerCI

Mean 1626625 1526953
Std Dev 3377324 2797304

UpperCI  1-Alpha

1620471 0.900 < 90% CI

38.90267

UpperCI  1-Alpha

1726207 0990 < 99% CI

4229352 62




¢ One can also compute confidence intervals for a number of
different population means using Fit Y by X.

¥ ¥ (Inewav Analvsis nf

ksi By Batch |

Quantiles

Means/dnavadt Test Bl
Means and Std Dev<— | . *

Compare Means » :; AL
Nonparametric Ny T
UnE qual Variances Ll
Power... [l
Set Alpha Level «— ¥ fF—1— 1|
Mommal QuarntiePlt » [E F G H
M atching Columr...

Save y fh

Display Options 2

Script »

L1

The indicated menu option
computes a population
mean confidence interval
for each level of the
Nominal factor

[ —]

The indicated menu
option sets the

confidence level for the
confidence intervals.

95% is the default
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Example: Using the dataset Al Li.JMP calculate a 99% confidence
interval for each of the population Batch means.

| Oneway Analysis of ksi By Batch

The vertical tips

250 - -
|« 8 . of the means
200 . - = .
: s 1 1 3 o diamonds
i -_+_ _;_ . . ! l : 0
RRCE IS | 8 H represent 99%
4 - -
o0 g . - confidence
s o 15 " r ¢ & intervals
Batch
Means for Oneway Anova
Lewel Mumber Iean Std Error Lowrer 99% Upper 99%
A 10 172.400 10.517 14457 200.23
B 10 177.600 10.517 149,77 20543
> 10 152.200 10.517 124.37 180.03
D 10 163.100 10,517 135.27 190.93
E 10 158.000 10.517 130.17 18583
F 10 173.300 10.517 14547 201.13
G 10 164.000 10.517 136.17 191,83
H 10 140.700 10.517 112.87 168.53

Std Error uses a pooled estimate of error variance
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Example: Using the dataset Al Li.JMP calculate a 95% confidence
interval for each of the population Batch means.

| Onz\;\rﬂa\r An.aly5|s of ksi By Batch | = The vertical tips of
wld s g s C : the means diatrr;cgr(}/ds
. o 8 R R now represent 95%
) 150—_‘f_:_i‘ : _T_T__I__i_ conﬁdeI:)nce intervals
wo- 8 s = ° ° =
s 5 ¢ b £ F G
Batch

Means for Oneway Ahova

Lewel Number Ilean Std Error  Lower 95%  Upper 95%

A 10 172.400 10.517 151.43 193.37
B 10 177.600 10.517 156.63 198.57
C 10 152.200 10.517 131.23 173.17
D 10 163.100 10.517 142.13 134.07
E 10 158.000 10.517 137.03 178.97
F 10 173.300 10.517 152.33 194.27
G 10 164.000 10.517 143.03 134.97
H 10 140.700 10.517 118,73 161.67
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Std Error uses a pooled estimate of error variance

Hypothesis Testing: Quantifying Risk
General Idea behind Hypothesis Testing

e Recall that a confidence interval is constructed from sample
data and provides a set of plausible values for the true (and
unknown) mean of the population from which the sample is
drawn.

o In hypothesis testing, we suggest plausible values for the mean
and then use data to see if these values make sense.

e More precisely, we construct hypotheses about the unknown

mean, then collect data and, using statistical analysis, quantify
risks of incorrect decisions relative to the hypotheses.
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o We will discuss hypothesis testing in the context of testing for the
mean of a single normal population. We shall see later that the F-
Ratio (F test) hypothesis test can be used to determine if several
population means are equal.

e In fact, hypothesis testing has very broad applications. It is a fairly
involved statistical topic and we will only cover the basics.

¢ An hypothesis test requires a statement of our conjecture as to the
true value(s) of a population parameter, such as p, we call this value
the null hypothesized value(s) denoted as H,

e In the case where we reject our null hypothesis as false, we require
a statement of an alternative hypothesis H,, which is automatically
accepted if H is rejected

e We will begin with an example of a hypothesis test. o

Example: Average Lumen Level for CFL's

e We are interested in determining if the average lumen value for
a lot of compact fluorescent lights is close to the specification
target of 3500 lumens.

e A technician has measured the intensities for each of 7 suitably
aged lamps from the specified lot:

3200, 3400, 4000, 3700, 2500, 3400, and 3700.
e We need to determine if the lot average is significantly distant

from the target of 3500 lumens. We will employ a one-sample t
test to determine if we are significantly off target.
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e For this data,

X =3414.3, S=481.1

e The question we are attempting to address is whether or not the
distance between 3414.3 and 3500 is sufficient to indicate that the
true unknown mean for the lot may be different from the target
value of 3500. Recall that we talk about statistical distance in terms
of standard deviation or standard error.

e Our null hypothesis is:
H, :pu=3500

¢ Our alternative hypothesis is:

H,: #3500

e Note that values of X that are either much larger or smaller than
3500 would cause us to doubt H,,. o

Underlying Theory

Y-
e Recall that = %/f has a t distribution on n-1 df, where S is
n

the estimate of ¢ and n-1 is the df for S.

¢ So, under the assumption stated in H, that p = 3500:
X -3500

Y

follows a t distribution on 6 df.

e This quantity, evaluated for our sample, is called the test

SASe X - 34141-3500

y\/_ B 481%

=-0.4714
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e Since large or small values of X correspond to large or small values
of the statistic 7, we reject H,, for values of 7 that are out in the tails
of the distribution.

¢ Notice that we have just evaluated the distance between the
target and the sample average in terms of standard errors (since
we are dealing with averages). We have found that the sample
average is about 0.47 standard errors less than the target of 3500. Is
this a significant distance?

e Since our t statistic behaves according to Student's t distribution
with n-1 degrees of freedom, we can use the t distribution to
determine whether or not this is an unusually large t value. The
density for a t distribution on 6 df looks as follows; the t value of
-0.47 is marked with an "X".
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0.47

P(T < -47)=.3275

011

e This value is not sufficiently extreme to cause us to doubt H,,.
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P-Values

e Throughout the course we have referred to the p-values as a means
by which we can judge the significance of main effects and
interaction terms in our models. We now explain the concept behind
p-values.

e In fact, the probability of obtaining a value of't at least as extreme
as -.47, if H,, 1s true, is the area under the t distribution from negative
infinity to -.47 and from .47 to positive infinity. This area is .665
(.3275 in each tail). This value, the probability that, if H; is true, we
obtain a value of the test statistic as extreme as what was in fact
observed, is called the p-value for the test.

e P-values are routinely reported on computer output. (Prob > F in
our one-way ANOVA printout, for example, is a p-value for the test
that the factor level means are all identical.) 5

e Sufficiently extreme values to reject Hj in the lumens example
would be in the tails of the distribution. These would be values of ¢
for which the p-values, or Prob > [t|, is small, say below .10.

e A p-value of .10 in a t-test for a single mean would indicate that
we would only expect to see such an extreme value about 10% of

the time, if the mean were as hypothesized.

e The smaller the p-value, the more significant the result!
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Significance Levels

e We can also think of setting our p-value in advance, and defining
which values of the test statistic will lead to rejection of H,. Here
we would reject if, for some small value of a,

t|>1

n—-1,1-a/2

e If we reject H, using this rejection region, then we would reject
H, only a proportion a of the time when H,, is true.

e The value a is called the significance level of the test.
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e Suppose we had set out to conduct a test of H, at the 0.05
significance level. Then we could look up t¢ )5 in the t

tables. This gives tg (o5 = 2.447. We would then have noted
that the absolute value of -.47 does not exceed 2.447, and so we
would not have rejected of H; at a 0.05 significance level.

e The test we have conducted in this example is called a one-
sample t-test.
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e A one sample t test can be performed in JMP using the
Distribution of Y platform.

¢ Enter Distribution of Y with the variable containing your data

entered as Y

e Under the red button on the Display header you will notice a a
menu option, “Test Mean Value”.

e A dialogue window appears and asks for your hypothesized
mean value, that is your hypothesized value for the true mean.

e Click OK and a text report of your test appears below.

e JMP provides the p-value for the test rather and lets the user
make the decision to reject or fail to reject the null hypothesis.
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Specify Hypothesized Mean 135011 i oK I
Enter True Standard i_—
Deviation to do 2-test : Cancel

rather than ttest H
|f you also want a I~ Wilcoxon Sign-Rank ;IDI
nonparametric test:

* Distributions
¥ ¥ Lumen
Display Options » 1
Histogram Options
Normal Quantile Plot | [43857
Outher Box Plot 07024
Quantile Box Plot 82746
Stem and Leaf 19 2018
COF Plot 19.3696
Test Mean 7
Test Std Dev... 7
Confidence Interval ¥ | 23000
Capabilty Analysis 1433 57
Fit Distibution » | o357
i > be31ss
cv 14089923
JMP will also perform

a test for the value of
the population Std.

Dev. o

Mean 3414.2857 Hypothesized Value 3500
Std Dev 431 07024 Actual Estimate 341429
Std Err Mlean 181 83746 df [
upper 95% Mean 32502018 Std Dewv 42107
lovrer 95% Iiean 2069 3696 t Test

o) 7 Test Btatistic 04714

Fum Wats T Prob>|t 0.6540

Sum 23900 Frob =t 0.6730
Vatianice 231428 57 Prob <t 0.3270
Skewness -1.103507

Kurtosis 18483158

cvV 14089933

[
P-value
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0.0015

0.0010

0.0005 -

Proportion of sample
means we expect to
fall outside of the

window if H,, is true

Zost Myuwvalue | When the analysis appears for the One
Hypothesized Value 3500 N le t-test d butt W t
R saaz0| | SamPple t-test, a red button shows up a
df 6| | the bottom of the results display. If you
Std Dey 4107 | depress the red button you are given two
t Test 2 2 o
L e menu options for graphical dlSpl:dyS. .For
Prob > i 0.6540 the present we select PValue animation,
Prob>1 06730 which allows to graphically interpret the
i ot meaning of a p-value.
PYalue animation
Power Animation
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0.00z3
Estim Mean 3414 2857143
S " Hypoth Mean 3500
3500+ 0.47— ~ T Ratin-0.471404521
0.0020 J7 \ ;,\A P Vaiue 0.6540046203
)

0.0000

:
2500 3000

T
3500
X

4000

T
4500

The p-value represents the proportion of mean values for X, that
would fall outside of the window specified by the T ratio if
pu=3500 (H,). We want this proportion to be < 0.05.
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Estim Mean 3414.2357143
Hypoth Mean 3859

T Ratio -2.443803739

P Walue 00500753058

3859i2.45i

J7

oms
0.0020
Proportion of sample
00015+ | means we expect to
. fall outside of the
window if H, is true
00010
0 0005
00000 i
3000

i
4500 001

If our null hypothesized mean had been 3859, then we would be
on the edge of the rejection region because the p-value is
approximately equal to 0.05, our significance level.
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00015+ \/7

0.0025
Estim Mean 34142857143
Hypoth Mean 3941 9291339
~, T Ratio -2.901320756
0.00204 Yy P Velue 00272671454
3942+2.90-— { || Proportion of sample

- / | | fall outside of the
\ | window if H, is true
00010 \
00005
0.0000 e

|| means we expect to

T | T T T T T U ] e
2400 2600 2800 3000 3200 3400 3600 3200 4000 4200 4400 4600 4200 5000 5200

X

Suppose we had specified H :u=3942, then our p-value would be
0.027 < 0.05. We expect less than 3% of sample means to fall outside
of the observed window, if the null is true. We strongly reject H,.
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Statistical Decision Making
¢ Hypothesis testing requires a binary decision as to whether the data
supports our hypothesis (called the null hypothesis) or not.
e Binary, accept or reject, decisions have four possible results:

e The True Positive -- the null hypothesis is truly false and is
correctly rejected as false.

e The False Positive -- the null hypothesis is true, but is erroneously
rejected as false (called a Type I error).

e The True Negative -- the null hypothesis is true and is correctly
accepted as true.

e The False Negative -- the null hypothesis is truly false but is
erroneously accepted as true (called a Type II error).
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o A test that results in lots of false positives is virtually useless since
a rejection is most likely an error.

e A test which results in lots of false negatives is dangerous since the
customer now receives poor quality product, which is missed by the
quality tests or checks performed by the producer.

e Any analytic method (including hypothesis testing) will result in all
four of the outcomes given enough opportunity. No test or analytic
method is fool proof.

eHypothesis testing attempts to keep the errors to a reasonable
minimum. The risk of a false positive is controlled by the
significance level.

e False negatives are controlled by designing tests with sufficient
power to detect that the null hypothesis is false. We shall see how
this is done later on. -




Case Study: An important characteristic of hot melt asphalt
pavement is the specific gravity/density of the mix that is applied to
the surface. Two methods exist to measure density/specific gravity.
One method is a wet chemical method that requires taking a sample
of cores from the pavement and determining the density/specific
gravity in the laboratory. The other method is nondestructive and is
based upon the scattering of a neutron radiation source applied to the
pavement. For 30 cores from a paving project the neutron gage first
measured the density/specific gravity in situ, then the cores were
taken to the laboratory and the density/specific gravity measured
chemically for each of the cores. The DOT wishes to use the
neutron gages because they are quick and less expensive. Paving
contractors believe that a substantial bias exists between the two
methods and are worried that too much pavement will be declared
“out of spec.” For the 30 core areas, the neutron gage measured an
average specific gravity of 2.29.
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The power for a one sample t test using the neutron gage mean as the

hypothesized mean (using JMP P-value animation).
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70 4 '—‘ Core method = 2.3148 ‘
:

“Estim Mean 2.3148
:rug‘t rI§:1r».:,;,|an 22312 49899?293 )
. 2an £..

801 Bifa 00217035342 ) I Neutron Gage = 2.29 ‘
powver 09782966655 \ X

50 - \ \
e/
\ |
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30 / |
201 \
/ \ s‘/ \

104 / \i
) & J/‘_\\H -

T 1 1 1 T T T 1
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X

M Std Err Mean Alpha
30 0.00604 0.05
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What if the core method average had been 2.31?

50
709 “Estim Mean 2.3100682825 '—‘ Core method = 2.31 ‘
‘True' Mean 2.3100682825 4 f
g0+ Hypoth Mean 2.29 .
Befa 0.1059210789 / |
power 0.8940759211 - | Neutron Gage = 2.29 ‘
50 T
> 40 -
30
20 -
!
104
>
D T 1 T T T T T T
225 226 227 228 229 230 231 232 233 234 235 236
M Std Err Mean Alpha
30 0.00504 0.05
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What if the core method average had been 2.30?
&0
709 “Estim Mean 22999317175 N Core method = 2.30 ‘
‘True' Mean 2.2999317175 A, '
60+ BUfeh edaczaets \ ﬁ é\ |
au.l
power 0.3554709189 AR % | Neutron Gage = 2.29 ‘
50 7
> 40 - ”
V.
’
30 4 2
f
20 4
/
0 T T - T A / \\}\T T T T T
225 226 227 228 229 230 231 232 233 234 235 236
X
N Std Err Mean Alpha
30 0.00604 0.05
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Improving the Power of a Hypothesis Test

e Power represents the ability of a hypothesis test to detect true
differences between null hypothesized values and alternative
hypothesized values.

e Power is analogous to the resolution of a microscope. The
higher the power, the smaller the features that can be
distinguished.

e The sample size n 1s commonly adjusted in order to achieve a
hypothesis test with a desired level of power.

¢ Recall that the standard deviation of an average is estimated by
By increasing the sample size, we can increase the power of
our test since the statistical distance between the null and

alternative values is increased by a factor of root 7.
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e Example. Suppose we wish to detect a mean shift of 200 lumens
in a lamp manufacturing process and o = 200. If samples of size n =
10 are collected, then the standard error of the sample mean is

200/ _ —63.25
YA

e So a 200 lumens difference is 3.2 standard errors.

o If n = 100 then the standard error is 20 lumens, and the 200 lumen
difference is 10 standard errors. We could easily detect a shift of
this magnitude.

e Power is the probability of detecting a true difference between
the null and alternative values of the population mean, when the
alternative value is the true mean. We are never absolutely
certainty of detecting a true difference.
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e For a one-sample t test, here is the formula one uses to calculate
the sample size n required to achieve a desired power. Let

o = P(false positive) = significance level of the test
B = P(false negative), so power =1 - 3

A = a specified difference we wish to detect

o2 = population variance

e The required sample size is

Z +Z Y
n:(M\]GZ

A

where Z,_,, and Z,_ are percentiles of the standard normal
distribution.
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Example: Suppose a = 0.05, B = 0.05, power=0.95, A =200,
and ¢ = 200. Then

2 2
n:(zm +ZO_95j = :(1.96+1.645j 200% =13
A 200

e The power of a test can also be adjusted by changing the
significance level. The smaller the significance level, then the
higher the power of the test for a given sample size and specified
difference.
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e The JMP software has an excellent facility that allows users to
generate Power Curves from which sample size determinations can
be made for any particular experimental application.

e The Power Curve routine is in the DOE Platform

e Select the DOE platform by clicking on the DOE tab in the JMP
Starter screen.

e Select the Sample Size and Power menu option from the DOE
platform (see picture on next slide).

e There are 3 options for Power calculations depending upon the

application. [+ sample size |
Prospective Power and Sample Size Calculations

Zelect Stuation for Sample Size or Power calculation

One Sample Mean | Sample Size for testing a mean m a single sample

Two Sample Means | Testing that the means are different across 2 samples
kSample Means | Testing that the means are different across k samples 93

[ File “ Basic Stats ”Mode]j.ng ” Multrrariate ” Survival ”Gfaphs “ QC “ DOE ”Tables “ Index l
Ezpenmental Design. Define factors and design a table of expenimental runs.

@I Custom Design ; Create a design talored to meet specific requirements
@ Gcreening Design ; it through many factors to find the few that have the most

effect.

+11,| _Respanse Surface Design i Find the best response allowing quadratic effects

(curvature).

Full Factarial Design 1 Generate all possible combinations of the spectfied factor
H .
settings

j:l: T aguchi Arrays ; Iake inner and outer arrays from signal and noise factors
i: Mixture Design ; Optimize a recipe for a misture of several ingredients
@ Augmented Design ; Add more runs to an existing data table. Replicate, add

centerpomnts, fold over or add model terms

Gample Size and Pawer ; Phut any two of the power to detect an effect, the sample

e, and the effect size given the third. Or compute one

given the other two.
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Example: Fitting Power Curves in JMP using the Lumens data (One
Sample Mean case). To generate power curves simply fill in the
desired difference to detect. You must generate separate curves if a
range of differences is to be evaluated.

v Sample Size

—Cne hean

Enter: Alpha

Testing if one mean 15 different from the hypothesized value.

[ QosPo

Error Std Dev @> (o)

Extra Params

0

Supply two values to determine the third.
Enter one value to see a plot of the other two.

Difference to detect

Sample Sire

Can)A

Powrer

Cantinue |
Backup |
AMmmMnSmmtl
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Power curves for two different delta (difference) values

0.30
0.20
0.104

Difference n Means ~ Error 5td Dev Alpha Difference in Means  Error Std Dew Alpha
431 0.050 481 0.050
1.00 1.00
4
0.901 = 090

0.80+ /
070+

0.304 /
0.204
0 10*/

0.00

a0 — T
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Sample Size

0 5 10 15 20 25 30 35 40 45 50 55 60 &5 70 75 80
Sample Size

Sample size of 80 required in
order to have a Power = 0.95
to detect 200 lumen shift.

Sample size of 20 required in
order to have a Power = 0.95

to detect 400 lumen shift.
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Confidence Intervals Versus Hypothesis Tests

¢ Although it is not obvious, confidence intervals and hypothesis
tests are mathematically equivalent. Each provides a slightly
different perspective. However, for a given situation, the inferences
drawn from a hypothesis test are equivalent to those inferences based
upon a confidence interval.

¢ A confidence interval provides a set of possible values for the true
unknown population parameter. One gains a sense of the precision in
the inferences made about the possible value of the population
parameter.

¢ A hypothesis test provides a p-value with which to assess the
observed significance or risk associated with making inferences
about the possible value of the population parameter.

o Statistical software often provides both confidence intervals and

hypothesis tests for population parameters.
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