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Design of Experiments I Spring 2002

Introductory Material 

Statistical Concepts and Methods 
Useful for Design of Experiments

Feel a little uneasy with 
statistical terms and methods?  
This section should help.

2

• "(Statistics is) the most important science in the whole world, 
for upon it depends the practical application of every other 
science and of every art: the one science essential to all political 
and social administration, all education, for only it gives exact 
results of our experience....to understand God's thoughts, we 
must study statistics, for these are the measure of his purpose." -
-- Florence Nightingale

Apart from her fame as a pioneer in modern 
nursing and public health, Florence 
Nightingale was a distinguished member of 
the American Statistical Association

Hear her actual voice recordings at: 
http://www.dnai.com/~borneo/nightingale/
nutting.htm
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Samples Vs. Populations
• Sample: A subset of size n of observations drawn from a target 
population.

• Random Sample: A sample selected in a random manner -- each 
member of the population has an equal probability of being selected.

• Population: A conceptual or physical set of all possible 
observations that can be collected (a.k.a.,Target Population).

• Population Mean: The theoretical average of a population denoted 
by the Greek letter µ.

• Population Standard Deviation: The theoretical standard deviation 
of a population denoted by the Greek letter σ.

• Population Variance: The theoretical variance of a population 
denoted by σ2.
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Frequency Distributions
• Data can be displayed using a variety of ‘visual’ methods.  

One important tool is the frequency distribution. 

• In any population, some random variation is always present -
no two members of a population are identical.  

For example, there is some variation in the following:  

Height and weight of human beings
Number of blue M&M’s in randomly selected bags

• For discrete or categorical data, frequency (count) is the 
number of times each value occurs in the data set.  

• For example:  The number of blue M&M’s in each bag is a 
discrete measurement.  The ‘frequency’ of blue M&M’s can 
be counted.
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Frequency Distributions
• If the data are continuous measurements, then we must use 

grouped frequency.  The range of the data is divided into 
convenient intervals (bins) and we count the number of data 
points falling into each interval.

For example:  The frequency of ‘5th grade girls in a particular 
school that weigh 65-75 lbs’ is a ‘grouped frequency’.

• The frequency (total count) for each interval can be converted 
into a relative frequency, or ‘percent’.  Here, we divide 
each interval frequency by the total number of data points to 
calculate a ‘percent’.

The relative frequency of 5th grade girls weighing 65-75 lbs 
is a percent of all of the 5th grade girls.
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Frequency Distributions
• On the following slide, grouped frequencies, relative 

frequencies (percents) and cumulative percents have been 
calculated for a data set.

• The following steps were followed :
1. Order the data points from smallest to largest.
2. Count the number of data points (n).
3. Determine bin size - square root n is a good guideline.  

Note:  bins must be the same size and cannot overlap.
4. Place a tally mark in the appropriate bin for each data point.
5. Count the number of tally marks in each bin.  
6. Calculate the grouped frequency, percent and cumulative 

percent for each bin.
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Frequency Distributions

8

Histogram of the Aluminum Lithium Data



5

9

Frequency Distributions
A Bar chart is a graphical display of a frequency distribution for 

categorical data.  

A Pareto Chart is a special type of bar chart (more on these 
charts later).

A Histogram is a graphical display of a grouped frequency 
distribution for continuous data.

There are three important characteristics of histograms:

• Shape:  Is the shape symmetric or ‘skewed’?
• Central tendency:  Is there a mounded shape?
• Scatter:  How do the data spread about the center?

These characteristics are demonstrated on the following slides:
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Frequency Distributions
Common Histogram Shapes:
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Frequency Distributions
What is the Central Tendency?

Bi-modal or multi-modal:  More 
than one ‘peak’.  This may be an 
indication that there is more than 
one population in the data.

Uniform:  Data is evenly 
distributed with no peak or central 
tendency.

Uni-modal:  Data has one central 
tendency.
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Frequency Distributions
How much ‘spread’ or 
variabity is in the data?
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Frequency Distributions
As we saw previously, Cumulative Frequency Distributions

are another effective method for displaying data.  

This type of display is often used when we are interested in 
the percent of items falling below a particular value.

Cumulative Frequency DistributionFrequency Distribution
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Frequency Distributions
Histograms provide many benefits.  Histograms:

• Are a graphical representation of a frequency distribution.
• Are good compact summaries of a data set.
• Are easy to interpret variation in the data set.
• Help to identify unusual patterns.

Unfortunately, histograms also have many limitations and 
should be used with caution:

• Individual data points are lost.
• Histograms are unstable with less than 75 data points

and can be very misleading.  100 or more data points is 
highly recommended.

• Improper bin sizes, as we will see on the following 
slide, can mask important data features.
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The Empirical Rule
In manufacturing we are often interested in predicting the 

proportion of products or units that will fall within a specified 
range (or specification limit).

According to the Empirical Rule:  If a frequency distribution is 
approximately symmetric and mounded in shape, then we will 
observe the following:

• Approximately 68% of all values will fall within ±1S
(standard deviation) of the mean.

• Approximately 95% will fall within ±2S of the mean.
• Nearly 100% will fall within ±3S of the mean.

As we will see, this rule is used a great deal in industrial statistics 
to calculate quantities such as spec limits and process limits.
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The Empirical Rule

If a random variable is Normally distributed, then the Empirical
Rule works exactly.

µ µ σ+ 2µ σ+ 3µ σ+µ σ−2µ σ−3µ σ−

99.7%

95%

68%
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The Empirical Rule
• The sample mean is 162.66 and the sample standard 

deviation is 33.77.

• Applying the Empirical Rule to this data:

We expect 68% of the data to be in the interval [129, 
196].  

The observed frequency is 57 values or 71%. 

We expect 95% of the data within the interval [95, 230].

The observed frequency is 75 values or 94%.

• The Empirical Rule typically works well if the frequency 
distribution is not too skewed (with a long tail) or too flat 
(no central mound).
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Measures of Location and Spread
While graphical displays can show us trends or patterns in our 

data, we are often interested in two important characteristics:

• Measures of the ‘location’ of the center of the 
population or sample, also referred to as the ‘central 
tendency’.  

Three measures of central tendency are mean, median, 
and mode.

• Measures of ‘scatter’ or variability of the population or 
sample.  These are measures of the spread of the values 
around the central tendency.  

Three measures of spread are variance, standard 
deviation, and range.



10

19

Measures of Location and Spread

• For the pull-off force data presented earlier, what can we 
conclude about the distribution of values?  

• What is a typical pull-off force? 

• How do the measurements vary about the center?
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Measures of Location and Spread

• The mean is the center of gravity or balancing point of a 
data set.

• The sample mean is an estimate of the population mean, 
which is the average of all observations from a population.

1 2 1... n
in i xx x xX

n n
=+ + +

= = ∑

• The Sample Mean or average is the most important 
measure of ‘the middle” of the data.  

• The sample mean, referred to as ‘X-bar’, is the average of 
all observations from a sample:
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Measures of Location and Spread

An example of a sample mean for the pull-off force data.

• Notice that the mean is denoted by a fulcrum to emphasize 
that it is the balancing point of the distribution of values.

13X =
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Measures of Location and Spread

• The Sample Median is the 50th percentile of the sample 
data.  Half of the data values lie below the median and half 
lie above the median.

The median is the middle value.

Notion:  We usually denote the median by placing a ~ (tilde)
over the variable, or we use the subscript 0.50.

Example: The sample median is denoted X or X 0.50.

• The sample median and sample mean are approximately the 
same if the distribution is symmetric.  If the distribution is 
highly skewed, then the mean and median are quite different.  

• Can you explain why?

~
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Measures of Location and Spread

• The two most important measures of the variability or spread 
of sample data are Variance and Standard Deviation.

• Sample Variance, denoted by S2:

S2 is an estimate of the population variance σ2.

S2 = average squared distance the data points lie from 
their sample mean.

• Sample Standard Deviation, denoted by S:

S is an estimate of the population standard deviation σ.

S = average distance the data points lie from their sample 
mean.
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Measures of Location and Spread
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• The sample variance is calculated as the average squared 
distance from the sample mean.  

• In other words, the variance is computed by calculating 
distance from each data point to the sample mean:

• The sample standard deviation, the average distance from the 
sample mean, is calculated from the sample variance:

2S S=
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Measures of Location and Spread

2 21.60 0.2286( ),   0.2286 0.4781( )
7

S ft lbs S ft lbs= = − = = −

• Calculation of variance and standard deviation for the pull-
off force data.

i Pull-off ( ix ) ix x− 2( )ix x−

1 12.6 -0.4 0.16
2 12.9 -0.1 0.01
3 13.4 0.4 0.16
4 12.3 -0.7 0.49
5 13.6 0.6 0.36
6 13.5 0.5 0.25
7 12.6 -0.4 0.16
8 13.1 0.1 0.01

104.0 0.0 1.60
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Measures of Location and Spread
• The denominator for the calculation of sample variance, S2, is 

n-1. This is known as the ‘Degrees of Freedom’.  

• Degrees of freedom is an important concept in statistics which 
will be referred to often.  

• The degrees of freedom are the number of ‘freely varying 
observations’ in a sample data set.  The larger the sample 
size, the larger the degrees of freedom.  Larger degrees of 
freedom allows us to make stronger inferences about the 
population characteristic.

(This concept is extremely important, particularly when we are 
discussing Designed Experiments).
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The Normal Distribution
The most important distribution is known as the Normal or 

Gaussian Distribution.  This distribution, known as the Bell 
Shaped Curve, is the basis for most of the statistical 
techniques we will cover throughout the course.

For all continuous distributions, calculus is required to 
calculate the probabilities - the area under the curve.

To determine probabilities for normally distributed 
populations, a ‘normal probability table’ has been created 
(as we will see in a few slides).

There are infinitely many possible normal probability curves, 
each depending on the mean and the variance.  On the next 
slide, we see examples of normal curves with different 
means and variances.
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The Normal Distribution
There are infinitely many possible normal distributions defined 

by values of the population parameters µ and σ2.

For any normal random variable X with mean µ and variance 
σ2, we denote the distribution as X~N(µ; σ2 ).
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The Normal Distribution
Example:  The distribution for pull-off force for bonded wires 

(in the semi-conductor industry) is normally distributed, and 
has a mean of 10 and a variance of 4.  We denote the 
distribution as  X~N(10;4):

The shaded area shows P(X>13) for a normal random variable 
with µ = 10 and σ = 2.
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The Normal Distribution
A normal random variable with µ = 0 and σ2 = 1 is called a 

standard normal random variable and is denoted by ‘Z’.

We denote the distribution for the standard normal variable by  
Z~N(0;1).  This is a reference distribution that all normal 
distributions can be compared to.

The normal probability table, shown on the next slide, is based 
on the cumulative standard normal distribution - the 
cumulative area under the standard normal curve from right 
to left.

Note that the table starts at Z=0.00 and goes to Z=3.09 
(negative values of Z are not listed).  This is because the 
normal distribution is symmetric around the mean - both 
sides of the distribution have the same probabilities.
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The Normal Distribution
This table can also be found in the Appendix (Normal Curve 

Probabilities).

The figure above depicts a typical probability calculation for Z
using the normal probability table on the previous slide.

From the table, we find that the probability that Z ≤ 1.5, 
written P(Z ≤ 1.5), is .93.
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The Normal Distribution
Example:  Probability calculations for Z: 

The table gives the cumulative probability (area under the 
curve) from the left.  

To find a probability (area) to the right, subtract from 1, 
since the total area under the curve = 1.

( 1.5) 1 ( 1.5) 1 0.9332 0.0668P Z P Z> = − ≤ = − =

0.9332

0.0668
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The Normal Distribution
Suppose we wish to find percentiles of Z such that P(z<Z<z)=0.95.
Because the normal distribution is symmetric, each tail outside of 

this interval contains an area (probability) of 0.025.  

From the Standard Normal table, P(Z < 1.96) =0.975.  Therefore, 
P(Z < -1.96) = 0.025 and our desired interval is P(-1.96 < Z < 
1.96) = 0.95. 
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The Normal Distribution
In the figure below we compare the normal random variable X to 

its standard normal counterpart Z:

: 10, 2
: 0, 1

13 10 1.5
2

X
Z

XZ

Z

µ σ
µ σ

µ
σ

= =
= =

−
=

−
= =
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The Normal Distribution
We may be interested in whether our process is capable of 

producing parts that are within the specs that have been 
established by either an internal or an external customer.

Example:  For a machining operation, the most critical 
measurement of the operation is the outer diameter of the 
parts produced.  

A specification has been established by the external customer.  
The target is .25 mm +/- .0015 mm (the lower spec is .2485 
mm and the upper spec is .2515 mm).

The outer diameter, based on process data, has the 
distribution  X~N(0.2508;0.00052).  

What percentage of parts will be within specifications?
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The Normal Distribution
We start by turning X into Z values. 

Then, we use the standard normal table to calculate the 
probabilities of Z. 

P(Z<-4.6) = 0.00, and P(Z<1.4) = 0.92

Thus, P(-4.6 < Z< 1.4) = 0.92 - 0.00 = 0.92. 

.2485 .2508 4.6
.0005

.2515 .2508 1.4
.0005

XZ

Z

Z

µ
σ
−

=

−
= = −

−
= =
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The Normal Distribution
Therefore, P(.2485 ≤ X ≤ .2515) = 0.92.  

Since the probabilities of Z apply to our random variable 
X, approximately 92% will be within specification.
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Normal Quantile Plot

For the normal distribution: p pX Z σ µ= +

How do we know if our data are normally distributed?  In 
practice we are often not certain if a sample data set came 
from a normally distributed random variable.

We can calculate percentile values p from the sample data set.

We can then plot these percentiles of X versus the 
corresponding percentiles of Z.

If the plot is approximately a straight line, then we assume that 
the data come from a normal distribution.

This plot is referred to as a Normal Quantile Plot.
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Normal Quantile Plot
We will continue with the Aluminum Lithium Data.  Do the KSI 

data seem to come from a normal distribution?

40

The Rule of Averages
A very powerful rule used throughout industrial statistics is The 

Rule of Averages (or the Central Limit Theorem):

Suppose we have a random variable X with a population 
mean µ and a population standard deviation σ, then sample 
averages of size n drawn from the population of X are 
normally distributed with population mean = µ and 
population standard deviation = .

The term “standard error of the mean”, , is the standard 
deviation of the sample mean, where n is the sample size.

S
n

n
σ
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The Rule of Averages
Why is this rule important?  It is one of the fundamental 

reasons we use sample data:

• The standard deviation of the sample mean is always 
less than the standard deviation of the raw data (by a 
factor of the square root of the sample size).

• We get more precise estimates of population behavior 
by taking samples.  Larger samples give more precise 
estimates than smaller samples.

• Averaging is a very effective noise filter.  

• Sample means are normally distributed.

As we will see in the following examples, the Rule of Averages 
applies to both normal and non-normal distributions.

42

Overlay Plot of Raw Values of X and Mean Values of X,  n=10
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• The Rule of Averages at Work:  Raw values X~N(10;4)  
compared to their sample means for sample size n=10

44

Overlay Plot of Raw Values of X and Mean Values of X for n=10
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The Rule of Averages at Work:  Raw exponential values X 
compared to their sample means for sample size n=10
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Confidence Intervals

• Point estimates of parameters, like the sample mean, do not 
tell us anything about the precision of the estimate.  As an 
example, a single estimate of the population mean µ may fall 
very far from the true underlying value.

• Recall that point estimates are sample statistics that have a 
probability distribution.  We make use of these distributions in
order to determine how close our individual sample estimates, 
of a population parameter, may be to the true underlying 
parameter value.

• Two popular statistical methods to quantify the precision in a 
point estimate are called: (1)  Confidence Intervals, and (2) 
Hypothesis Tests.
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Case Study: Color Rendition Index (CRI) is an important 
characteristic of fluorescent lamps (100 is sunlight).  The dot plot 
depicts 20 CRI values for a lot of manufactured Compact 
Fluorescent Lamps (CFLs).  Is the process on target?

48

• If the lamp manufacturing process is on target (µ=63), then is it 
likely to observe a sample average as low as 59.75? Is the 
process on target?  To answer this question we must look at the 
probability distribution for the sample average and determine if
the observed sample value is probable; i.e., have we observed an
error in our process?

• Use the sample standard deviation S to obtain the 
standard error for the sample mean (S.E.=1.02).

• Use the Empirical Rule to determine if 59.75 is a probable 
sample average given the process is on target.

• 95% of sample averages should be in the interval 
63 ± 2(1.02) = [60.96, 65.04], 99% in 63 ± 3(1.02) = 
[59.94, 66.06]. 

• Neither interval contains the sample average 59.75.

X

SS
n

=
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Histogram for 1,000 simulated sample mean CRI values

CRI~N(59.75;1.022). Not one sample mean exceeds 63.
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Finding a Confidence Interval for "µ" With Small n

• We wish to calculate an interval of possible values for the 
true unknown population mean µ.

• We must be able to quantify our level of confidence that  the 
interval contains the true unknown mean.

• Statistical confidence intervals provide a way to compute 
such an interval of possible values for µ.

• Student's t distribution is the basis for statistical confidence 
intervals.
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• If                         then                 follows the "standard normal 

distribution", N(0;1). 

• σ is usually unknown and is estimated by the sample standard 
deviation S. 

• σ must be a known value in order for Z to follow a 
standard normal distribution.

• When S is used to estimate σ, we have Student's t distribution

or                        with µt=0.0 and σt>1.0.

2~ ( ; )X N µ σ XZ µ
σ
−

=

1n

Xt
S
µ

−

−
= 1n

Xt S
n

µ
−

−
=

Student’s t Distribution
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• The added variability (σ > 1.0) of Student's t comes from 
estimating σ with S.

• The exact shape of Student's t distribution depends upon the (n-1) 
degrees of freedom used to estimate S. 

• Student's t has thicker tails compared to the standard normal for 
small degrees of freedom.  As the sample size n increases, Student's 
t approaches the shape of the standard normal.

• A table of percentile values for each distribution is required, since 
the distribution shape changes with the degrees of freedom n-1.

• The appendix contains a table of percentiles for Student's t 
distribution -- the rows are indexed by increasing degrees of 
freedom; i.e., each row represents a different distribution curve.  
The columns are indexed by percentile values for each distribution.
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Calculating a Confidence Interval for µ Using Student’s t 
Distribution

 
1. Specify a desired level of confidence for the interval -- usually 

denoted by the Greek letter α (alpha) and typical values are 
0.10, 0.05, or 0.01.

2. For the selected α, compute the Percent Confidence for interval. 
The Percent Confidence = (1- α)*100. 

3. Compute the required percentile from Student's t distribution.  
* The percentile = (1- α/2) 
Example: for a 95% C.I., α=0.05, the percentile is 0.975.

(For the degrees of freedom n-1 and the specified percentile, use the 
Student's t table to find the appropriate "Student's t value"). 

Example: α=0.05, n=11, the desired percentile, 
from Student's t Table  is t0.975,10=2.228.
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5. Using  and sample standard deviation S, calculate 

the desired confidence interval for µ using the formula:

• We are (1-α)% confident the interval contains the unknown 
value for the population mean µ.

• Confidence intervals are easy to calculate but take a little 
practice at first.

1 / 2, 1 1 / 2, 1,n n
S SX t X t
n nα α− − − −

 − +  
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Partial Student’s t Table
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19,0.97559.75,  4.54,   2.093X S t= = =

Example: Calculate a 95% Confidence Interval for the CRI data.  
For n=20 sample measurements we have:

Recall our formula for a C.I.: 1,1 / 2n

SX t
nα− −±

Therefore our 95% C.I. is

( )4.5459.75 2.093 59.75 2.093 1.02
20

57.63 61.88µ

± = ± =

≤ ≤

Notice that the interval does not contain 63 which indicates that 
the target value it is not a plausible value for the process mean.
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What Does a Confidence Interval Tell Us?

• Although fairly easy to calculate, confidence intervals have a 
subtle interpretation and are often misinterpreted -- even by 
statisticians.

• A (1-α)% confidence interval does not imply a probability that 
any one interval actually includes the true mean µ.

• The confidence interval level actually states that, "if I collected 
100 sample sets and constructed a C.I. for each set, then (1-α)% of 
those C.I.'s will bracket the true unknown mean µ -- no claims are 
made for anyone of the individual computed C.I.'s.

* As an example, a 95% C.I. implies that if we collected 100
sample sets and computed 100 C.I.'s, on average 95 out of 
the 100 intervals will contain the true unknown mean µ.



30

59

100 Simulated 95% Confidence Intervals for, n=5, 
Using Student's t, 4 df
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Calculating Confidence Intervals in JMP
• Many find the arithmetic of confidence intervals rather obscure, 
however modern software like JMP provide confidence interval 
estimates for the data analyst.

• It is important, however, that the data analyst properly understand 
the interpretation of the confidence intervals that are computed by 
the software.

• JMP provides confidence interval estimates for a population mean 
µ in a number of platforms where such intervals make sense for the
data analysis.

• We will only cover the more common places where a data analyst 
might wish to compute a confidence interval for a single population 
mean for some number of different population means.
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• The most common platform to use, when confidence intervals 
are desired for a population mean, is Distribution of Y.

• In Distribution of Y one can specify the confidence level to use 
in estimating a confidence interval, but JMP provides a 95% 
confidence interval by default.

The Confidence Interval 
menu option lets you 
select the confidence level

A 95% interval 
is provided by 
default

62

Example: Use the dataset Al_Li.JMP to compute a 90%, 99%, and 
95% confidence interval for the unknown population mean KSI 
value.  Use the Distribution of Y platform.

90% CI

99% CI

95% CI
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• One can also compute confidence intervals for a number of 
different population means using Fit Y by X.

The indicated menu option 
computes a population 
mean confidence interval 
for each level of the 
Nominal factor

The indicated menu 
option sets the 
confidence level for the 
confidence intervals.  
95% is the default

64

Example: Using the dataset Al_Li.JMP calculate a 99% confidence 
interval for each of the population Batch means.

The vertical tips 
of the means 
diamonds 
represent 99% 
confidence 
intervals
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Example: Using the dataset Al_Li.JMP calculate a 95% confidence 
interval for each of the population Batch means.

The vertical tips of 
the means diamonds 
now represent 95% 
confidence intervals
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Hypothesis Testing: Quantifying Risk

General Idea behind Hypothesis Testing

• Recall that a confidence interval is constructed from sample 
data and provides a set of plausible values for the true (and 
unknown) mean of the population from which the sample is 
drawn. 

• In hypothesis testing, we suggest plausible values for the mean 
and then use data to see if these values make sense. 

• More precisely, we construct hypotheses about the unknown 
mean, then collect data and, using statistical analysis, quantify 
risks of incorrect decisions relative to the hypotheses. 
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• We will discuss hypothesis testing in the context of testing for the 
mean of a single normal population. We shall see later that the  F-
Ratio (F test) hypothesis test can be used to determine if several 
population means are equal. 

• In fact, hypothesis testing has very broad applications. It is a fairly 
involved statistical topic and we will only cover the basics. 

• An hypothesis test requires a statement of our conjecture as to the 
true value(s) of a population parameter, such as µ, we call this value 
the null hypothesized value(s) denoted as Ho

• In the case where we reject our null hypothesis as false, we require 
a statement of an alternative hypothesis HA, which is automatically 
accepted if Ho is rejected

• We will begin with an example of a hypothesis test. 
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Example: Average Lumen Level for CFL's

• We are interested in determining if the average lumen value for
a lot of compact fluorescent lights is close to the specification 
target of 3500 lumens. 

• A technician has measured the intensities for each of 7 suitably 
aged lamps from the specified lot: 

3200, 3400, 4000, 3700, 2500, 3400, and 3700.

• We need to determine if the lot average is significantly distant
from the target of 3500 lumens. We will employ a one-sample t 
test to determine if we are significantly off target. 
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• For this data, 

• The question we are attempting to address is whether or not the
distance between 3414.3 and 3500 is sufficient to indicate that the 
true unknown mean for the lot may be different from the target 
value of 3500. Recall that we talk about statistical distance in terms 
of standard deviation or standard error. 

• Our null hypothesis is: 

• Our alternative hypothesis is: 

• Note that values of that are either much larger or smaller than 
3500 would cause us to doubt H0. 

3414.3,    481.1X S= =

: 3500oH µ =

: 3500AH µ ≠

X
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Underlying Theory
• Recall that has a t distribution on n-1 df, where S is 

the estimate of σ and n-1 is the df for S.

• So, under the assumption stated in H0 that µ = 3500:

follows a t distribution on 6 df.

• This quantity, evaluated for our sample, is called the test 
statistic: 

Xt S
n

µ−
=

3500X
S

n

−

3414.1 3500 0.4714481.1
7

Xt S
n

µ− −
= = = −
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• Since large or small values of correspond to large or small values 
of the statistic t, we reject H0 for values of t that are out in the tails 
of the distribution. 

• Notice that we have just evaluated the distance between the 
target and the sample average in terms of standard errors (since 
we are dealing with averages). We have found that the sample 
average is about 0.47 standard errors less than the target of 3500. Is 
this a significant distance? 

• Since our t statistic behaves according to Student's t distribution
with n-1 degrees of freedom, we can use the t distribution to 
determine whether or not this is an unusually large t value. The 
density for a t distribution on 6 df looks as follows; the t value of 
-0.47 is marked with an "X".

X
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• This value is not sufficiently extreme to cause us to doubt H0.
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P-Values

• Throughout the course we have referred to the p-values as a means 
by which we can judge the significance of main effects and 
interaction terms in our models.  We now explain the concept behind 
p-values.

• In fact, the probability of obtaining a value of t at least as extreme 
as -.47, if H0 is true, is the area under the t distribution from negative 
infinity to -.47 and from .47 to positive infinity. This area is .665 
(.3275 in each tail). This value, the probability that, if H0 is true, we 
obtain a value of the test statistic as extreme as what was in fact 
observed, is called the p-value for the test. 

• P-values are routinely reported on computer output. (Prob > F in 
our one-way ANOVA printout, for example, is a p-value for the test 
that the factor level means are all identical.) 

74

• Sufficiently extreme values to reject H0 in the lumens example 
would be in the tails of the distribution. These would be values of t
for which the p-values, or Prob > |t|, is small, say below .10.

• A p-value of .10 in a t-test for a single mean would indicate that 
we would only expect to see such an extreme value about 10% of 
the time, if the mean were as hypothesized.

• The smaller the p-value, the more significant the result!
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Significance Levels
• We can also think of setting our p-value in advance, and defining 
which values of the test statistic will lead to rejection of H0.  Here 
we would reject if, for some small value of α, 

• If we reject H0 using this rejection region, then we would reject 
H0 only a proportion a of the time when H0 is true. 

• The value α is called the significance level of the test. 

1,1 / 2nt t α− −>
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• Suppose we had set out to conduct a test of H0 at the 0.05 
significance level. Then we could look up t6, .025 in the t 
tables. This gives t6, 0.025 = 2.447. We would then have noted 
that the absolute value of -.47 does not exceed 2.447, and so we 
would not have rejected of H0 at a 0.05 significance level. 

• The test we have conducted in this example is called a one-
sample t-test. 
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• A one sample t test can be performed in JMP using the 
Distribution of Y platform.

• Enter Distribution of Y with the variable containing your data 
entered as Y

• Under the red button on the Display header you will notice a a 
menu option, “Test Mean Value”.

• A dialogue window appears and asks for your hypothesized 
mean value, that is your hypothesized value for the true mean.

• Click OK and a text report of your test appears below.

• JMP provides the p-value for the test rather and lets the user 
make the decision to reject or fail to reject the null hypothesis.

78

P-value

JMP will also perform 
a test for the value of 
the population Std. 
Dev. σ
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When the analysis appears for the One 
Sample t-test, a red button shows up at 
the bottom of the results display. If you 
depress the red button you are given two 
menu options for graphical displays.  For 
the present we select PValue animation, 
which allows to graphically interpret the 
meaning of a p-value.

80

The p-value represents the proportion of mean values for X, that 
would fall outside of the window specified by the T ratio if 
µ=3500 (Ho). We want this proportion to be < 0.05.

3500 0.47
7

S
±

Proportion of sample 
means we expect to 
fall outside of the 
window if Ho is true



41

81

If our null hypothesized mean had been 3859, then we would be 
on the edge of the rejection region because the p-value is 
approximately equal to 0.05, our significance level.

3859 2.45
7

S
±

Proportion of sample 
means we expect to 
fall outside of the 
window if Ho is true
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Suppose we had specified Ho:µ=3942, then our p-value would be 
0.027 < 0.05.  We expect less than 3% of sample means to fall outside 
of the observed window, if the null is true.  We strongly reject Ho.

3942 2.90
7

S
± Proportion of sample 

means we expect to 
fall outside of the 
window if Ho is true
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Statistical Decision Making
• Hypothesis testing requires a binary decision as to whether the data 
supports our hypothesis (called the null hypothesis) or not. 
• Binary, accept or reject, decisions have four possible results:

• The True Positive -- the null hypothesis is truly false and is 
correctly rejected as false. 

• The False Positive -- the null hypothesis is true, but is erroneously 
rejected as false (called a Type I error).

• The True Negative -- the null hypothesis is true and is correctly 
accepted as true. 

• The False Negative -- the null hypothesis is truly false but is 
erroneously accepted as true (called a Type II error). 
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• A test that results in lots of false positives is virtually useless since 
a rejection is most likely an error. 

• A test which results in lots of false negatives is dangerous since the 
customer now receives poor quality product, which is missed by the 
quality tests or checks performed by the producer. 

• Any analytic method (including hypothesis testing) will result in all 
four of the outcomes given enough opportunity. No test or analytic 
method is fool proof. 

•Hypothesis testing attempts to keep the errors to a reasonable 
minimum. The risk of a false positive is controlled by the 
significance level.

• False negatives are controlled by designing tests with sufficient 
power to detect that the null hypothesis is false. We shall see how 
this is done later on. 
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Case Study: An important characteristic of hot melt asphalt 
pavement is the specific gravity/density of the mix that is applied to 
the surface.  Two methods exist to measure density/specific gravity.  
One method is a wet chemical method that requires taking a sample 
of cores from the pavement and determining the density/specific 
gravity in the laboratory.  The other method is nondestructive and is 
based upon the scattering of a neutron radiation source applied to the 
pavement.  For 30 cores from a paving project the neutron gage first 
measured the density/specific gravity in situ, then the cores were 
taken to the laboratory and the density/specific gravity measured 
chemically for each of the cores.   The DOT wishes to use the 
neutron gages because they are quick and less expensive.  Paving
contractors believe that a substantial bias exists between the two 
methods and are worried that too much pavement will be declared 
“out of spec.”  For the 30 core areas, the neutron gage measured an 
average specific gravity of 2.29.

86

The power for a one sample t test using the neutron gage mean as the 
hypothesized mean (using JMP P-value animation).

X
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What if the core method average had been 2.31?

X

88

What if the core method average had been 2.30?
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Improving the Power of a Hypothesis Test
• Power represents the ability of a hypothesis test to detect true
differences between null hypothesized values and alternative 
hypothesized values. 

• Power is analogous to the resolution of a microscope. The 
higher the power, the smaller the features that can be 
distinguished. 

• The sample size n is commonly adjusted in order to achieve a 
hypothesis test with a desired level of power. 

• Recall that the standard deviation of an average is estimated by
. By increasing the sample size, we can increase the power of 

our test since the statistical distance between the null and 
alternative values is increased by a factor of root n. 

n
σ
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• Example. Suppose we wish to detect a mean shift of 200 lumens 
in a lamp manufacturing process and σ = 200. If samples of size n = 
10 are collected, then the standard error of the sample mean is 

• So a 200 lumens difference is 3.2 standard errors.

• If n = 100 then the standard error is 20 lumens, and the 200 lumen 
difference is 10 standard errors. We could easily detect a shift of 
this magnitude. 

• Power is the probability of detecting a true difference between 
the null and alternative values of the population mean, when the
alternative value is the true mean. We are never absolutely 
certainty of detecting a true difference. 

200 63.25
10

=
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• For a one-sample t test, here is the formula one uses to calculate 
the sample size n required to achieve a desired power. Let 

α = P(false positive) = significance level of the test 
β = P(false negative), so power = 1 - β
∆ = a specified difference we wish to detect 
σ2 = population variance  

• The required sample size is 

where Z1- α/2 and Z1- β are percentiles of the standard normal 
distribution. 

2

1 / 2 1 2Z Z
n α β σ− −+ 
=  ∆ 
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Example: Suppose α = 0.05, β = 0.05, power=0.95, ∆ = 200, 
and σ = 200. Then 

• The power of a test can also be adjusted by changing the 
significance level. The smaller the significance level, then the 
higher the power of the test for a given sample size and specified 
difference. 

2 2
2 20.975 0.95 1.96 1.645 200 13

200
Z Zn σ+ +   = = =   ∆   
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• The JMP software has an excellent facility that allows users to
generate Power Curves from which sample size determinations can 
be made for any particular experimental application.

• The Power Curve routine is in the DOE Platform

• Select the DOE platform by clicking on the DOE tab in the JMP 
Starter screen.

• Select the Sample Size and Power menu option from the DOE 
platform (see picture on next slide).

• There are 3 options for Power calculations depending upon the 
application.

94
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Example: Fitting Power Curves in JMP using the Lumens data (One 
Sample Mean case).  To generate power curves simply fill in the 
desired difference to detect.  You must generate separate curves if a 
range of differences is to be evaluated.  

σ
α

∆
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Power curves for two different delta (difference) values

Sample size of 80 required in 
order to have a Power = 0.95 
to detect 200 lumen shift.

Sample size of 20 required in 
order to have a Power = 0.95 
to detect 400 lumen shift.
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Confidence Intervals Versus Hypothesis Tests

• Although it is not obvious, confidence intervals and hypothesis 
tests are mathematically equivalent. Each provides a slightly 
different perspective. However, for a given situation, the inferences 
drawn from a hypothesis test are equivalent to those inferences based 
upon a confidence interval. 
• A confidence interval provides a set of possible values for the true 
unknown population parameter. One gains a sense of the precision in 
the inferences made about the possible value of the population 
parameter. 
• A hypothesis test provides a p-value with which to assess the 
observed significance or risk associated with making inferences 
about the possible value of the population parameter. 
• Statistical software often provides both confidence intervals and 
hypothesis tests for population parameters. 


