

For M_{0}
For M_{1}

Finding horizontal deflection at $A, \Delta_{A}(\mathrm{~h})$

$$
\begin{aligned}
& \Delta_{\mathrm{A}} \mathrm{EI}=\int_{0}^{5(A \rightarrow B),(B \rightarrow C)} 0 d x+\int_{0}^{5(C \rightarrow D)}(-10 x)(-5) d x+\int_{0}^{4(F \rightarrow E)}(12 x-98)(5- \\
&x) d x+\quad \int_{0}^{6(E \rightarrow D)}\{-12 x+12(x+4)-98\}\{-1(x+4)+5\} d x \\
&=625-952+600 \\
&=273
\end{aligned}
$$

Δ_{A} (horizontal) $=\frac{273}{E I} m$ (to the right)

Finding rotation at A, θ_{A}

$$
\begin{aligned}
& \theta_{\mathrm{A}} \mathrm{EI}=\int_{0}^{5(A \rightarrow B),(B \rightarrow C)} 0 d x+\int_{0}^{5(C \rightarrow D)}(-10 x)(-1) d x+\int_{0}^{4(F \rightarrow E)}(12 x- \\
&98)(-1) d x+\quad \int_{0}^{6(E \rightarrow D)}\{-12 x+12(x+4)-98\}(-1) d x \\
&=0+125+296+300 \\
&=721 \\
& \theta_{\mathrm{A}} \quad=\frac{721}{E I} \mathrm{rad} \text { (anticlockwise) }
\end{aligned}
$$

Edited by Dr. Latifee,

