Relative Flexural Stiffness of Beam Section to Flexural Stiffness of a Width of Slab

The parameter used to define the relative stiffness of the beam and slab spanning in either direction is α , calculated from $\alpha = \frac{E_{cb} I_b}{E_{cs} I_s}$.

In which \mathbf{E}_{cb} and \mathbf{E}_{cs} are the modulus of elasticity of the beam and slab concrete (usually the same) and \mathbf{I}_{b} and \mathbf{I}_{s} are the moments of inertia of the effective beam and the slab.

Effective top width of beam for interior and edge beam

(a) Symmetric slab

(b) Single side slab

Figure: Effective top width of beam for (a) interior and (b) edge beam

Graphically finding Relative Flexural Stiffness of Beam:

Another way of determining α_{fm} is graphically, using Figures below.

 α_{fm} = average value of α_f for all beams on edgs of a panel

 β = ratio of clear spans in long to short direction of slab.

Figure: Beam Stiffness (Edge or Exterior Beam)