Indeterminate Beam Analysis by Virtual Work Method:

The indeterminate beam will be analyzed by virtual work method

Let,
$\Delta_{c}=$ Deflection at 'C' due to all causes
$\Delta_{\mathrm{co}}=$ Deflection at 'C' due to actual load (S) while redundant ,extra support is removed $\mathrm{R}_{\mathrm{C}}=$ Reaction at C due to external loading
$\Delta_{C R}=$ Deflection at ' C ' due to redundant reaction at C, R_{c} while actual load(s) is removed $\delta_{c}=$ Deflection at ' C ' due to unit load at C, therefore, $\Delta_{c R}=R_{c} . \delta_{c}$ $\Delta_{c R}=R_{c} . \delta_{c}$
$\Delta_{c}=\Delta_{c o}+\Delta_{c R}=\Delta_{c o}+R_{c} \delta_{c}=0$, where support deflection is zero, which is the ideal case.
Reaction at $C, R_{c}=-\Delta_{c o} / \delta_{c}$

In the top figure, the redundant support is removed and in the following figure, the external load is removed and the elastic curves, i.e., the deflected beamshapes are drawn for both instances.

Solution:
$R_{c}=-\Delta_{c o} / \delta_{c}$
Where,
$\Delta_{\mathrm{c}}=$ Deflection at ' C ' due to all causes
$\Delta_{\mathrm{co}}=$ Deflection at 'C' due to actual load (S) while redundant ,extra support is removed
$\Delta_{C R}=$ Deflection at ' C ' due to redundant reaction R_{c} while actual load (S) is removed $\delta_{c}=$ Deflection at ' C ' due to unit load at C
$\Delta_{c}=\Delta_{c o}+R_{c} \delta_{c}$
$\Delta_{c}=\Delta_{c o}+R_{c} \delta_{c}=0, \quad R_{c}=\frac{-\Delta c o}{\delta c}$

$$
\begin{aligned}
\text { El. } \Delta_{\mathrm{c}} & =\int_{0}^{6 A \rightarrow D}\{25 \cdot x\} \cdot\{-1 \cdot x\} d x+\int_{0}^{6 D \rightarrow B}\{25 \cdot(x+6)-50 \cdot x\} \cdot\{-1 \cdot(x+6)\} d x \\
& =-1800+(-3600) \\
& =-5400 \\
\Delta_{\mathrm{c}}= & -\frac{5400}{E I} \mathrm{kN} \cdot \mathrm{~m}^{3} \\
\Delta_{\mathrm{co}} & =-\frac{5400}{E I} \mathrm{kN} \cdot \mathrm{~m}^{3}
\end{aligned}
$$

$$
\text { El. } \delta_{\mathrm{c}}=\int_{0}^{12 A \rightarrow B} \frac{M_{1}{ }^{2}}{E I} d x+\int_{0}^{12 B \rightarrow C} \frac{M_{1}{ }^{2}}{E I} d x
$$

$$
=\int_{0}^{12 A \rightarrow B}(-1 . x)^{2} d x+\int_{0}^{12 B \rightarrow C}(-1 . x)^{2} d x
$$

$$
=576+576
$$

=1152

$$
\delta_{c}=-\frac{1152}{E I} k N \cdot m^{3}
$$

$$
\mathrm{R}_{\mathrm{c}}=-\frac{-\frac{5400}{E I}}{\frac{1152}{E I}}
$$

$$
=4.69 \mathrm{kN}
$$

$\Sigma M_{B}=0$, Let, clockwise + ve;
$50 * 6-R_{A} * 12-4.69 * 12=0$
$R_{A}=20.31 \mathrm{kN}$
$\Sigma F_{x}=0, \uparrow(+v e)$
$20.31-4.69-50+R_{B}=0$
$\mathrm{R}_{\mathrm{B}}=34.38 \mathrm{kN}$ (downward)

