Foundation or Footing Design: Part 3
 Courtesy of Dr. Latifee's IMI research group, Text books (Design of concrete structures by McCormac etc.) and others

Continuation of previous example in part 2:

Now, bearing pressure for strength design $=$ Factored load/ Area of footing P_{u} / A_{f}
$\mathrm{Pu}=1.2 \mathrm{DL}(351)+1.6 \mathrm{LL}(56.4)=511.44$
Bearing pressure $=511.44 / 90.25=5.67 \mathrm{ksf}$, or
$\underline{\mathbf{q}}_{\underline{\underline{u}}} \underline{\text { net }}=\frac{1.2 * 351+1.6 * 56.4}{9.5 * 9.5}=511.44 / 90.25=5.67 \mathrm{ksf}$

One way shear check:
Considering beam Shear or One way shear :
Beam shear, $\mathrm{Vb}=\mathrm{qu} \times$ Beam strip length $\times(\mathrm{c}-\mathrm{d})$

$$
\begin{aligned}
& =5.67 \times 9.5 \times 2.167 \\
& =116.72 \mathrm{kips}
\end{aligned}
$$

Allowable shear, $\mathrm{Va}=2 \varphi \sqrt{f^{\prime} c} \mathrm{~b}$ d

$$
\begin{aligned}
& =(2 \times .75 \times \sqrt{ } 4000 \times(9.5 \times 12) \times 23) / 1000 \\
& =248.71 \mathrm{Kips}
\end{aligned}
$$

Since, $\mathrm{Va}>\mathrm{Vb}$, therefore, OK .

Considering punching Shear or Two way shear :

Punching shear, $\mathrm{Vp}=$ Factored load, or $\mathrm{q}_{\mathrm{u}} \times$ Footing area - Punched out area $\times \mathrm{q}_{\mathrm{u}}$ $=9.5 \times 9.5 \times 5.67-[(39 \times 39) / 144] \times 5.67=451.55 \mathrm{Kips}$
Allowable shear, $\mathrm{Va}=4 \varphi \sqrt{ } f^{\prime} c$ b d

$$
\begin{aligned}
& =(4 * .75 * \sqrt{ } 4000 *(39 * 4) * 23) / 1000 \\
& =680.77 \mathrm{Kips}
\end{aligned}
$$

Since, $\mathrm{Va}>\mathrm{Vp}$, therefore OK.
The Bending Moment:
$\left.\mathrm{Mu}=\left(5.67 * 9.5^{*}(4.08)\right)^{\wedge} 2\right) / 2=448.3 \mathrm{k}-\mathrm{ft}$
[Note: $\mathrm{Mu}=\left(\mathrm{q}_{\mathrm{u}} \times \mathrm{b} \times \mathrm{c}^{2}\right) / 2$; considering moment for the whole width of footing]
$\underline{\text { Reinforcements : }} \mathrm{A}_{\mathrm{s}}=\frac{M u}{\emptyset f y\left(d-\frac{a}{2}\right)}$
$=448.3 * 12 /[0.9 * 60 *(23-8 / 2)] ; \quad$ [assumed, $\mathrm{a}=8$ inches]
$=5.24 \mathrm{in}^{2}$;
$\mathrm{a}=\frac{A s f y}{.85 f^{\prime} c b}$
$=(5.43 * 60) / *(.85 * 4 * 12)$
$=7.98$ inches; very close to 8 inches assumed, therefore, OK ;
A_{s} required= $5.24 \mathrm{in}^{2}$.
Now, Minimum reinforcement for flexure,
$\mathrm{A}_{\mathrm{s}}($ minimum $)=200 * \mathrm{~b} * \mathrm{~d} / \mathrm{fy}$

$$
=(200 * 9.5 * 12 * 23) / 60000=8.74 \mathrm{in}^{2}
$$

A_{s} (minimum) $=8.74 \mathrm{in}^{2}$; within 9.5 ft footing width, controls.
Since, it is square footing, use 9 \#9 bar (Area provided $9 \mathrm{in}^{2}$) in each direction.

Figure: Detail of reinforcement

Last updated on August 17, 2016

