Center Point Deflection of a simply supported beam due to UDL-uniformly distributed loading

Q. Given the simply supported beam under a UDL (as shown in the figure below), determine Δ_{c}.

Solution: The equation we work with is $\Delta=\int \frac{M_{0} M_{1}}{E I} d x$,
Where $\mathbf{M}_{\mathbf{0}}$ = bending moment distribution due to actual or real loading
$\mathbf{M}_{\mathbf{1}}$ = bending moment distribution due to virtual or unit loading
$\mathbf{E}=$ modulus of elasticity of the material of beam
I = moment of inertia of beam section
L = beam span
$\boldsymbol{\Delta}_{\mathrm{c}}=$ deflection at point C
The diagram for M_{0} is as follows-

The diagram for M_{1} is as follows-

We know that $\Delta=\int \frac{M_{0} M_{1}}{E I} d x$

Hence,

$$
\begin{aligned}
\text { EII } \Delta_{C} & =2 \int_{0}^{\frac{L}{2}} \mathbf{A \rightarrow C}\left\{\frac{w L}{2} \cdot x-\frac{w x^{2}}{2}\right\}\left\{\frac{x}{2}\right\} d x \\
& =2 \int_{0}^{\frac{L}{2}}\left\{\frac{w L x^{2}}{4}-\frac{w x^{3}}{4}\right\} d x \\
& =2\left[\frac{w L \cdot x^{3}}{12}-\frac{w x^{4}}{16}\right]_{0}^{\frac{L}{2}} \\
& =\frac{5}{384} w L^{4}
\end{aligned}
$$

$$
\therefore \Delta_{C}=\frac{5 w L^{4}}{384 E I}
$$

Done by: Ms. Sama Ahmed
Checked by: Dr. Latifee, December 9, 2015

