Lecture 3- Homework

Question: Find Δ_{D} of the following simply-supported structure.

Solution:

The equation we work with is $\Delta=\int \frac{M_{0} M_{1}}{E I} d x$,
Where $\mathbf{M}_{\mathbf{0}}$ = bending moment distribution due to actual or real loading $\mathbf{M}_{\mathbf{1}}$ = bending moment distribution due to virtual or unit loading $E=$ modulus of elasticity of the material of beam $\mathbf{I}=$ moment of inertia of beam section $\mathbf{L}=$ beam span
$\boldsymbol{\Delta}_{\mathrm{D}}=$ deflection at point D

The diagram for M_{0} is-

The diagram for M_{1} is-

We know that $\Delta=\int \frac{M_{0} M_{1}}{E I} d x$ Hence,
El $\Delta_{D}=\int_{0}^{9}{ }^{\mathbf{B} \rightarrow \mathbf{C}}\{28.8 x-10(x+7)\} *(0.48 x) d x+\int_{0}^{4}{ }^{\mathbf{C} \rightarrow \mathbf{D}}\{-25 x+$ $28.8(x+9)-10(x+16)\} *\{0.48(x+9)\} d x+\int_{0}^{12 \mathrm{E} \rightarrow \mathrm{D}}(6.2 x *$ $0.52 x) d x$

$$
\begin{aligned}
& =832.032+1817.344+1857.024 \\
& =4506.4
\end{aligned}
$$

$$
\therefore \Delta_{D}=\frac{4506}{E I}
$$

Done by: Ms. Sama Ahmed
Checked by: Dr. Latifee, December 9, 2015

