Question: Find the deflections at D, C and E by Unit Load/Virtual Work method for the following simply supported beam.

Solution: The formula of deflection according to unit load method
Deflection, $\Delta=\int \frac{M_{0} M_{1}}{E I} d x$
Where, $\mathrm{M}_{0}=$ Bending moment distribution due to actual or real loading
$M_{1}=$ Bending moment distribution due to virtual or unit loading
$E=$ Modulus off elasticity of the material of beam
I = Moment of inertia of beam section
$\Delta=$ Deflection.

Determination of Δ_{D} :

Modiagram

M_{1} diagram

$$
\begin{aligned}
\text { EI. } \Delta_{\mathrm{D}}= & \int_{0}^{10}{ }^{A \rightarrow C}\{52.5 * x\}\{.5 * x\} d x+\int_{0}^{10} \quad C \rightarrow D \\
& +\int_{0}^{10} \quad E \rightarrow D \\
& \left\{37.5 *(x+10\}\{.5 *(x+10)\} d x+\int_{0}^{10}{ }^{B \rightarrow E}\{37.5 * x\}\{.5 * x\} d x\right. \\
= & 8750+48750+43750+6250 \\
= & 107500
\end{aligned}
$$

$\Delta_{D}=\frac{107500}{E I} \mathrm{~N} \cdot \mathrm{~m}^{3}$
$\Delta_{\mathrm{D}}=\frac{107.5}{E I} * 10^{3} \mathrm{~N} . \mathrm{m}^{3}$

Determination of Δ_{c} :

M_{1} diagram

EI. $\Delta_{c}=\int_{0}^{10} \quad A \rightarrow C\{52.5 * x\}\{.75 * x\} d x+\int_{0}^{10} \quad{ }^{B \rightarrow E}\{37.5 * x\}\{.25 * x\} d x$
$+\int_{0}^{10}{ }^{E \rightarrow D}\left\{37.5 *(x+10\}\{.25 *(x+10)\} d x+\int_{0}^{10}{ }^{D \rightarrow C}\{37.5 *(x+20)-60 * x\}\{.25 *(x+20)\} d x\right.$
$=13125+3125+21875+39375$
$=77500$
$\Delta_{C}=\frac{77500}{E I} \mathrm{~N} . \mathrm{m}^{3}$
$\Delta_{\mathrm{C}}=\frac{77.5}{E I} * 10^{3} \mathrm{~N} . \mathrm{m}^{3}$

Determination of Δ_{E} :

M_{0} diagram
M_{1} diagram

El. $\Delta_{\mathrm{E}}=\int_{0}^{10}{ }^{B \rightarrow E}\{37.5 * x\}\{.75 * x\} d x+\int_{0}^{10} \quad A \rightarrow C\{52.5 * x\}\{.25 * x\} d x$
$+\int_{0}^{10}{ }^{c \rightarrow D}\{52.5 *(x+10\}\{.25 *(x+10)\} d x$
$+\int_{0}^{10}{ }^{D \rightarrow E}\{52.5 *(x+20)-30 *(x+10)-60 * x\}\{.25 *(x+20)\} d x$
$=9375+4375+24375+34375=72500$
$\Delta_{\mathrm{E}}=\frac{72500}{E I} \mathrm{~N} . \mathrm{m}^{3}$
$\Delta_{\mathrm{E}}=\frac{72.5}{E I} * 10^{3} \mathrm{~N} . \mathrm{m}^{3}$

